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Abstract

Modern optimal control methods are used to develop a

multiple-input-multiple-output controller. Focus is made on a

three-controller configuration exhibiting high controllability

but low observability in the first controller, a median amount

of each in the second, and low controllability but high

observability in the third. These characteristics are due to

the technique used to suppress control and observation

sDillover among the controllers. A control model for large

space structures, which employs full state feedback using

deterministic observers, is developed and implemented in a

computer simulation. The technique of spillover suppression

and the conditions assuring stability of the control system

are developed and implemented as well.

The simulation is tailored to address the control of the

Draper-2 large flexible space structure model. The model has

been used previously for optical pointing (line-of-sight

(LOS)) studies. Here, position sensors and point force

actuators are used to effect feedback control (regulation) of

the damped unforced structural vibrations. The simulation can

output both the unsuppressed and suppressed case open-loop and

closed-loop eigenvalues and the LOS time response for

stability and performance analysis.

With the control problem formulated for modal control,

* an investigation is made into the effects on time response of

- assigning three groups of four modes in a permutative fashion

5vii
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to the three controllers. A fourth residual set of eight

modes is carried without spillover suppression to represent

* the unmodelled modes of a real structure. The groups are

assembled based upon a previous investigation's results from

applying modal cost analysis for LOS performance. Simple high

frequency truncation is also used for comparison.

Controllers based on modal cost analysis alone are found

to yield marginal stability and mediocre LOS performance due

to little insight into the sensitivity of the residual modes

to spillover. However, specific problem modes are readily

identified by examining the results of an internal balancing

analysis for modal sensitivity. Simple frequency truncation

is found to give the best time response here when the modes

most contributory to LOS are assigned to the controllers with

more controllability. However, the relatively small quantity

of modes and the overwhelmingly large relative contribution of

the three rigid body modes included may obscure some conclu-

sions. Results indicate more revealing results might be ob-

tained if more modes are added to the model and/or if some of

the residual modes are suppressed.
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MODAL ASSIGNMENT EFFECTS

ON DECENTRALIZED CONTROL

OF A LARGE SPACE STRUCTURE

,0

I. Introduction

Now that the space shuttle is demonstrating the ability0

to routinely deliver sizeable payloads to space, the construc-

tion of large space structures for commercial manufacturing,

scientific research, and military use will soon be reality.

There are still practical economic constraints, however, on

the amount of material the shuttle can deliver for construc-

tion. Efficient structural design then dictates the use of

thin, lightweight elements in trusslike frameworks. Although

helping eliminate the problem of delivering materials, this

introduces a control problem due to the undesirable flexi-

bility inherent in such structures. Often the large space

structure is intended for high accuracy pointing of antennas

and lasers. Active regulation (control) of structural vibra-

tions is thus required. Unfortunately such structures are

lightly damped and have numerous low-frequency vibrational

modes, often clumped together, within the bandwidth of prac-

tical control systems. Furthermore, there can be hundreds of

modes to be concerned with even after techniques (i, 2) have

been applied to reduce the number of modes from infinity for a

continious system, to thousands for a finite element struc-
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tural model. to those the designer concludes to still have

* significant effect on the stability and time response of the

control system. Modern state-space methods of control theory

lend themselves well, however, to this concept of a discrete

(finite) structural model. The more modes a designer can keep

in the model of the system/space structure, the less inac-

curate it will be. But the computational burden to an online

computer, functioning as the controller, grows also.

Therefore the designer may need to reduce this computa-

tional burden by employing multiple controllers. Each would

bear only a portion of the computational load, and ideally

control only those modes assigned to it, suppressing the

effects of other modes. In other words, ideally all modes

would be either controlled or suppressed. Practical con-

straints can still prevent there being enough controllers

and/or few enough modes to permit this, however. The remain-

ing modes are called residual modes. The effect of these

modes on the system is called observation spillover as they

contaminate the sensor (observation) data. In contrast, the

control applied to the controlled modes can affect the
iC

residual modes. This is called control spillover, and the

residual modes may drive the system either unstable or even

more stable. Insofar as the suppression of spillover is

concerned, however, Calico and Aldridge (3) successfully

showed that a transformation matrix could be generated by

singular value decomposition of the control and observation

matrices which, when applied to the feedback gain matrices,

% 1-2
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would drive spillover terms to zero. effecting suppression.

They employed a mathematical model of a fictitious nontrivial

space structure in a simulation whose computer code allowed

f or the inclusion of either three controllers with a set of

residual modes (numbering as few as zero) or four controllers

with no residual modes. The code contained an observer to

provide full state feedback. Calico and Thyfault (4) used a

similar version with altered code to investigate the effect of

direct output feedback in place of the observer. In neither

case was there time to carry the investigation to examining

time response. which could have been quite revealing of the

overall performance effects of the various ways in which modes

are assigned to controllers.

--The thrust of this thesis is to implement time response

output for the nontrivial model and investigate the effect on

time response of certain modal assignments by fixed groups to any

of the three controllers with another fixed group assigned as

residuals. The inclusion of residuals provides in a limited

sense a truth model for the analysis of stability and per-

formance. There may be significant differences in time response

caused by the fact that a controller is known to provide more

relative controllability and less observability, or vice versa,

for its assigned modes. The investigation will involve initially

the fixing of certain baseline parameters to allow a parallel

comparison of reasonable results. Then line-of-sight pointing

and defocus performance will be generated for comparison among

various cases. The performance is actually accomplished by using

1-3



position sensors to provide modal amplitudes measurement with an

observer in place for the unmeasured states, and using point

force actuators to execute control. All processes are assumed to

be deterministic, as stochastic estimation and control is not

within the scope of this investigation. The simulation model

is a version of the so-called-Draper-2 ' space structure model

originated at the Charles Stark Draper Laboratories.

The next section v4--1-describerthe selected model config-

uration and discuss its finite element representation. Then

the modal control and matrix transformation methods will be

explained. Afterwad"he implementation of the simulation

program will be discussed. -Fniva-t The last sections will

detail the investigation, results, conclusions and recom-

mendations. ,. 2 --

.

.C
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11. Selected Model Configuration

The model selected is basically the same as that used by

Calico et al in their investigations. It is a fictitious.

nontrivial space structure developed by Charles Stark Draper

Laboratories for just such control problem studies. Several

versions of the model, incorporating only minor changes, have

indeed been used extensively throughout the community. The

version selected here is that used by Draper Laboratories

themselves in a study done for the Defense Advanced Research

lit. Projects Agency (DoD) (5). It varies slightly from that

version used by Calico ata because of differing masses at

some locations. It was selected, however, because the study

using it included conversion data to obtain physical, line-of-

sight output directly from the generated-modal coordinates.

The model provides a realistic flexible space structure

simulator for study, and includes a flexible optical support

structure in a trusslike framework and an equipment section

with solar panels. The optical support structure consists of

three trusses: the upper mirror truss containing a convex

primary mirror and concave tertiary mirror, the lower mirror

truss containing the flat secondary mirror and image focussing

plane. and the metering truss to maintain mirror separation.

Figure 2-1. depicts the overall structure, and Figure 2-2 the

finite element representation. Figure 2-3 gives the model's

general structural dimensions. Then Figure 2-4 shows the

optical path of a ray of light reflecting from the mirrors.

2-1
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Appendix A gives the necessary input cards for a NASTRAN

* run, and pertinent data for the Draper-2 model. From the "CONM2"*

input cards it can been seen that the model weighs some 9304 kg,

and from Fig 2-3, is 24 m high.

Of interest in this investigation is the calculation of

the optical line-of-sight (LOS). For Draper-2 the optical

line-of-sight refers to how the ray of light shown in Fig 2-4

deviates in the x-, y-, or z-direction from a nominal "focal"S
point. The x-y planar deviations can be (and are in this

investigation) put into a more meaningful radial deviation,

while deviations in the z-direction can be understood better

as a measure of defocus of the optical ray. The motions of

the structural members, of course, are what causes these

deviations, and these motions bear kinematical relationship to

each other since the members are connected. Ref (5) provides

the basic algorithm for calculating these LOS deviations or

errors, while the full expansion of the basic algorithm can be
=0

found in Ref (3). Fortunately it is not necessary to employ

the fullblown set of equations to calculate the LOS error at

some time t in the time history of the motion of the struc-

C
ture. When modal analysis is performed, as in this investiga-

tion, a vector of modal coordinates at some time t can be

multiplied by some output matrix which effects modal super-

position and yields the three quantities of interest in an

"LOS vector." This matrix is referred to as (LOS and is of

row dimension 3 and column dimension n, where n is the number

of modes in the model. Table 2-1 provides the matrix in its

2-6
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transposed form for convenient reading. The column labels

LOSX and LOSY refer to a normalization imposed on the x- and

y-LOS errors, wherein they are divided by a factor of 8.051.

Table 2-1. (5)

Transpose of Matrix (LOS

Mode Frea LOSX LOSY Defocus

1 0.0 0.2705E-04 0.3778E-03 0.9313E-09
* 2 0.0 -. 1580E-04 0.8426E-06 -. 1863E-07

3 0.0 0.4927E-03 -. 3133E-04 -. 9604E-09

4 0.0 0.1166E-03 0.1155E-03 0.4366E-10
5 0.0 -. 3502E-04 -. 8110E-03 -. 2721E-08

6 0.0 -.7835E-03 0.4676E-04 0.6985E-09
7 0.1455 -. 2641E-06 0.3263E-03 -.4904E-07
8 0.2632 0.3489E-06 -.2141E-03 -. 1099E-05

9 0.3173 -. 1505E-05 -.3452E-06 -.5238E-05
10 0.3329 -. 2293E-03 0.4407E-06 -. 1467E-06
11 0.4432 0.6041E-05 0.1066E-05 0.1559E-04
12 0.5779 0.7359E-03 -.6768E-05 0.1906E-05
13 0.5814 0.2330E-05 0.8731E-03 -.4276E-06

* 14 1.2238 -. 1027E-05 -.2362E-03 -. 4831E-07
15 1.3002 0.3759E-05 -.1519E-03 -. 7763E-05
16 1.3475 -.1589E-03 -.1413E-05 0.9364E-05
17 1.7209 0.2738E-04 -.2777E-02 -.4955E-04
18 1.8187 0.2590E-05 -.4976E-06 0.2634E-05
19 1.8187 0.1151E-04 -.2364E-05 -.5493E-06

- 20 1.8892 -.3597E-13 -.3518E-14 0.3030E-14
21 2.3635 0.2237E-04 0.1376E-01 0.9028E-05
22 2.9895 0.1345E-03 0.2724E-05 -. 1509E-04
23 3.1795 -.4355E-05 -.2602E-03 0.2500E-05
24 3.3873 0.5573E-06 -.4536E-03 -. 4258E-06

25 5.1617 -. 1814E-13 -.4398E-15 0.2601E-14
26 5.2603 -. 3395E-04 -. 7013E-06 0.4747E-05

27 7.8769 0.1038E-14 0.7264E-16 -.9614E-16
28 8.1168 -.4275E-03 -. 1701E-02 -. 1950E-03
29 8.3600 0.2916E-03 0.4775E-06 -.3638E-05
30 8.5706 0.1868E-01 -.1108E-04 0.1072E-02
31 8.8135 -.3822E-04 -.2919E-06 -.3755E-05
32 8.8135 -.4494E-04 0.7780E-07 0.9546E-06
33 11.3462 0.3762E-05 0.8995E-05 -.5240E-06
34 11.4978 -. 1225E-02 0.1870E-02 0.3982E-03
35 12.7258 0.1098E-01 -.5662E-03 -.1593E-01
36 13.5832 0.2097E-04 0.7475E-03 -.6865E-04
37 13.7141 -.7143E-03 -. 1011E-01 0.1142E-02
38 14.1604 0.3953E-02 0.5935E-02 -. 1084E-02
39 15.6523 -. 1414E-01 0.3213E-02 -.4966E-02
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Table 2-1. cont'd

Transpose of Matrix cLOS

Mode Freg LOSX LOSY Defocus

40 16.0724 0.1907E-02 0.1044E-01 -.2294E-03
41 16.5248 -.6780E-02 -. 2220E-02 0.1413E-01
42 16.7453 0.3853E-02 -. 9540E-03 -. 1375E-01
43 17.1555 0.1132E-03 -.8405E-02 -. 1739E-02
44 17.8283 0.3244E-02 -. 1168E-02 0.7174E-02
45 19.0713 -.6439E-03 -. 1446E-01 -. 1545E-02
46 23.7716 -. 2266E-01 0.1669E-01 0.5217E-01
47 24.4140 0.9058E-02 0.3711E-01 -.2293E-01
48 25.9089 0.2688E-03 0.1205E-01 -.3317E-02
49 26.3625 -. 1444E-01 -. 1042E-01 0.2382E-02

50 26.4292 0.9416E-14 -. 6257E-14 -. 1485E-14

Note that the first six rows are for the rigid body modes

which have zero frequency. The portion of the table used in

this investigation included mode numbers 4 through 23, total-

ling twenty modes.

For this investigation, a set of twenty-one collocated

* pairs of point force actuators and position displacement

sensors were employed at the same locations in the structure

as in Ref (3). These locations and the sensor/actuator

orientations in direction cosines are given in Table 2-2.

There is a sensor and actuator for every motion which affects

the LOS deviations. Notice that the orientations are conven-

iently aligned with the coordinate axes of the model.

* Strictly speaking, any orientation that is physically possible

could be used as long as proper direction cosines are used.

With the structural model described, the system mathema-

tical model and control derivation is at hand.

2-8
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Table 2-2

Draper-2 Sensor/Actuator Locations and Direction Cosines

Pair Node x y z

1 9 0 1 0

2 9 0 0 1

3 10 0 0 1

4 11 1 0 0

5 11 0 1 0

6 11 0 0 1

7 12 0 0 1

8 27 1 0 0

9 27 0 1 0

10 27 0 0 1

11 28 0 0 1

12 29 0 1 0

13 29 0 0 1
0

14 30 0 0 1

15 32 0 0 1

16 33 0 0 1

17 34 1 0 0

18 34 0 1 0

19 34 0 0 1

20 35 0 1 0

21 35 0 0 1

(N.B. These map to only translational components of the modal

matrix described in Section III.)
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III. System Mathematical Models

Equations of Motion

The motion of a large space structure, such as Draper-2.

can be described as that of a typical multiple-degree-of-

freedom system with light damping. Here the system will be

deterministic, with active control to regulate vibrations.

The equations of motion can be expressed in matrix form as

Md + E4 + Kg = Du (1)

where

M e nxn mass matrix

E nxn damping matrix

K e nxn stiffness matrix

D e nxm actuator mapping matrix

g t nxl vector of physical coordinates q

u t mxl control force input vector

and n is the number of degrees of freedom (corresponding in

turn to the number of modes of vibration in the system), while

m is the number of actuators employed to effect control.

The matrices M and K may be obtained by finite element

analysis of the structure (for example by NASTRAN). The

control designer may then decide how many modes must be kept

in his model, and how many and what type actuators there

should be and where they should be placed.

Proceeding now toward the objective of determining the

control u, transformation is made to state space form.

3-1



*

Solving the undamped, free-vibration equation of motion

M§ * Kg = 0 (2)

yields the system's natural frequencies wk. k=1...no and the

nxn modal matrix cf. The columns of CD are the associated

eigenvectors determined from detl Mr-wk 2 -j - K I = 0 The

modal matrix is such that

*
g CD 1 (3

where is an nxl vector of modal coordinates. The

t properties of CD are such that when Eq (3) is directly

substituted into Eq (1) which is then premultiplied by (DT, the

result can be expressed as

r2 ..l ~ [k2 ri, = cDTDu (4)

The second order matrix equation may now be converted to a

*first order state space expression

k = Ax + Bu (5)

where

A e 2nx2n plant matrix

B e 2nxm control mapping or input matrix

C. x t 2nxI state vector

u e mxl control input vector

3-2
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These state space matrices have form

0 1

-w2 . -2•w
L. N
" subscript k implied)

B ' (6)

.

%

*B To obtain feedback of the time dependent motion of the

structure, so as to determine the control vector u. an

output equation is introduced.

Y = Cpg Cg (7)

where

Cp e npxn displacement matrix

Cv t nvxn velocity matrix

np t number of position (displacement) sensors

4.nv t number of position rate (velocity) sensors

F -3-3



In state space form, the output equation becomes

Y Cx (8)

where

C C Cp4D I CV4) 1 (9)

* Control Model

The complete finite element model of the structure is

described now by the 2n-dimensional vector x. Recall that n

represents the number of modes in the model, already reduced

from infinity for the real structure. Many of the high-

frequency modes can usually be discarded as of no consequence

in a reduced order model. As previously mentioned, there are

techniques available to aid in deciding how many and which

modes to keep to maintain some desired accuracy in reproducing

* the dynamics of the structure. The finalized reduced order

model, the control model. may still contain a great number of

modes, enough to place practical constraint on an online

computer attempting to do realtime computation of the control

-' u as well as model the plant A and receive feedback of the

output Y. The computational task may be apportioned among N

controllers reducing the unwieldy sizes of matrices to multi-

ply. Doing this also means more modes can be controlled

overall than by using a single controller. As is the case in

this investigation, each of the N controllers would control a

subset nj of the n modes, where n now represents the actual

3-



number of modes used in the control model and subscript i any

one controller.

With the finite number of modes selected for control,

there remain the rest of the modes characterizing the real

structure. Many of these will still have significant effect

on stability and performance of the control system, even

though they are not included in the controllers. A realistic

*investigation would include a good number of these "residual"

modes in the model. Thus a practical truth model implies a

control model containing n modes, of which there are r resid-

ual modes and (n-r) controlled modes.

Spillover is suppressed only among the controllers.

Again, the residual modes are part of the truth model, and are

*not suppressed, as their existence is not recognized by the

control system.

For each controller, represented by the subscript i. and

* r for the residual set, Eqs (5), (6), (8). and (9) may be

rewritten

/ ,. 0 • I 0
.= ic (11)

[ Ai .•............. . Bi = , = 1 )

\ :\
w2 \: - wTD]

(subscript k i implied)

N

Y Cii Crxr (12)

.3i=-5
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Ci = [Cpi I Cvi( 3 (13)

Note that the modal components of xi (and xr) are simply

arbitrary subsets or groupings of the modal states without

regard to any particular ordering. In other words, the modes

*can be assigned in arbitrary groups to the various controllers

or to the residual set in the control model.

Interestingly, when only position sensors are used and

*these are collocated with the actuators in pairs, as in this

investigation, the right partition of the C i matrices is zero.

Dropping the subscript i momentarily it is seen that

SC poo = lTD] T = (DT ] (14)

This is convenient, because now obviously Cp = DT.

These matrix forms and equations can be implemented in a

computer simulation for any structure. Only the dimensioning

of the matrices would vary based upon the desired number of

* modes to keep in the model and the applicable number of

sensors/actuators.

Modal Control

As previously indicated the type of control in this

investigation is full state feedback control, specifically

applied to a multiple-controller configuration. The desired

control is given by:

N
i= Gici (15)
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where the Gj are the control gain matrices to be determined.

Feedback in the form of Eq (15) assumes complete know-

ledge of the state variables. This is impossible in a real

structure. Here, the system model representing the real struc-

ture is, however, completely observable. This means all the

states can be reconstructed by use of an observer to "observe"

*the unmeasured states. (6) The state equations become

* ii = AiRi + Big + Ki(Y - 9i) (16)

* 9i = Cji~ (17)

The Ri's are the reconstructed states, the 9's the estimated
IA

outputs, and the Ki's are observer gain matrices.

The objective in selecting the Ki's is to have the

reconstruction error

ei = Ri - Ni (18)

go asymptotically to zero in steady state. An idea of how

this can be done can be obtained by examining the case of a

single controller. Here. y would just be yi. Using this fact

and subtracting Eq (16) from Eq (10), then substituting Eq (17)

and Ea (8) (subscripted), the observer-error state equation is

ii = (Ai - KiCi)ei (19)

The Ki are selected so that the eigenvalues of (Ai - KiCi) are

stable. Thus the steady state error will go to zero. Notice

in Eq (19) that there is no input term. The error is excited
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only by the initial conditions for the plant, and is thus not

affected by control inputs. This is, however, only the case

when there is a single controller. With multiple controllers.

Eq (16) still applies and there will be spillover due to

output y from all sensors.

Proceeding, with all the states now available in the

vector R i , the control is

N
Ui = Gi~i (20)

i=l

Determination of the control gain matrices as well as the

observer gain matrices will now be discussed.

For the development of these gain matrices linear optimal

*regulator theory is applied. In both cases this involves

construction of a quadratic performance index J. For a control

gain matrix the index is

J 1/2 (xiTQixi + uTRiu) dt (21)

where

Q • a positive semidefinite square weighting matrix

R • a positive definite square weighting matrix

J represents a compromise between obtaining minimum deviation

of the present state from the desired final value and reaching

the desired final value with minimum control input energy.

Thus the objective is to minimize J subject to the state

Eq (10). The optimal solution is shown in (6) to be given by

%3-8
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GL = -Ri-lBiTSi (22)
0

where Si is the solution to the steady state matrix Riccati

equation:

S i Aj 
+ AiTSi - SiBiRi-lBiTSi + Qi = 0 (23)

A similar approach is taken to finding the observer gain

matrices Ki. To build a similar performance index expression,

an equation similar to Eq (19) can be written:

41 = (A i - KiCi)Twi (24)

The sigenvalues for (Ai - KiCi)T are the same as for those in

Eq (19) since only the transpose of the matrix is involved.

Eq (24) can be rewritten

4i = AiTwi - CiTri (25)

which provides the form of an input

ri = KiTwi (26)

Now, a similar performance index can be written

M

J * 1/21 (WiTQoiyi * KiTRoiri) dt (27)

where the weighting matrices are not necessarily the same as

those for the controller gain matrices.

*When Eq (27) is minimized subject to Eq (25) the solution

is optimally

Ki = +Roi-lCiPi (28)
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where Pi is the solution to the Riccati equation:

* PiAiT + A i Pi - PiCiTRoi-iCiPi + Qoi = 0 (29)

Eq (22) and (28) provide the forms for the control and

observer gain matrices. The designer may then determine the

weightings "Q" and "R" as desired. It may be desired to

improve response settling time, stabilize a control-

destabilized system, or build uniformity into the closed-loop

system's modal damping ratios.

*While each separate controller may be designed such that

it is stable, the individual controllers are still coupled

when applied simultaneously as in Eq (20). In other words,

there is spillover among the controllers. The next subsection

will describe how it arises and indicate what is to be done to

suppress it and provide stable control in its presence.

Section IV will detail the means of suppression.

Multiple Controllers

Repeated here for clarity are the pertinent equations for

multiple controllers:

ki = Aii + Big (10)

N
Y =lCixi + Crr (12)

ii= Aii + Big + Ki(y - (1)  (16)

9i =Ciii (17)

@i Ri - (18)

Subtracting Eq (16) from Eq (10). rearranging, and finally
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substituting Eqs (12), (17), and (18), a proper expression for

the error states associated with multiple controllers follows:

r
ii = (Ai - KiCi)ej + KiCkk i = 1,...,N (30)

k=1 k = 1,...,N,r
k~i

* Using Eq (15), the state equations for controlled states, with

error states included, as well as for the residual states are

N
;i = (Ai + BiGi)xi + BiGjei + L BkGiRk i = I,...,N (31)

k=1
k~i

and

N
ir = Ar~r + ZBrGiRi (31a)

i=1

Notice there is no residual error state equation because no

attempt is made to observe the residual states.

An augmented state vector z can now be assembled from

the controlled state vectors xi and their associated error

states ei. wherein Eqs (30) and (31) are combined so that

the state and error vectors for individual controllers are

kept adjacent:

;= ( x T , e1T. ... NNT, eNT, xrT)T (32)

With Eqs (30) and (31) so combined, a single closed-loop

matrix state equation can be assembled in terms of z

as follows:
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Al+BIGi BIGi B.G. Bi BIGN BiGN 0

o Ai-KiCi .. KCi 0 .. K1CN 0 K1Cr

2 BiG1 BiG1 ..Ai+BiGi BiGi .. BiGN 0 0 z

KiCi 0 .. 0 Ai-KiCi . KiCN 0 KiCr

: : : 33)

BNGI BNGI -- BNGi BNGi .- AN+BNGN BNGN 0

KNC1 0 .. KNGi 0 .. 0 AN-KNCN KNCr

BrG1 BrG1 .. BrGi BrGi .. BrGN BrGN Ar

The entire control model is now contained in this single first

order matrix differential equation. The large matrix above

has been referred to as the system major matrix. In its

present general form it is not easy to see if such a system is

stable or not, but this will soon be examined.

Now, for three controllers N = 3 , and the augmented

state vector appears

z Xl T , e1 T, x2 T, e2T. x3 T. e3 T, xrT }T (34)

The components of z are then assembled based upon

i = A1NI - Blu (35)

i2 = A2N2 - B29 (36)

i3 =A3X -B3 (37)
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The observer applied is of form

*i = AiRi + Big + Ki(y - Vi) i = 1,2.3 (38)

where

_Pi = Ci~i i = 1,2,3 (39)

V = G11 + G222 + G323 (40)

Applying properly chosen Ki such that the individual ei go to

zero with time, the expressions for the 4i's are

il = (AI-KICI)ei + K1C2N2 + KjC3N3 + KlCrXr (41)

4-2 = (A2-K2C2)e2 + K2CI + K2C3N3 + K2CrXr (42)

i3 = (A3-K3C3)e3 + K3ClXl + K3C2N2 + K3Cr~r (43)

Recalling that ei = 21 - Ni , substituting this properly

into Eq (40), and then combining Eq (40) properly with Eqs

(35), (36), and (37), the remaining components of z are now

obtained:

)ij = (AI+BIGl)xI + BIG121 + BjG222 + BIG393 (44)

i-2 = (A2+B2G2)x2 + B2G2@2 + B2G121 + B2G 3 (45)

I3 = (A3+B3G3)x3 + B3G323 + B3G11 + B3G2*2 (46)

kr = Ar~r + BrGIRI + BrG222 + BrG3*3 (47)

* Equations (41) through (47) can now be put into matrix form
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A1 BlG1 BiGi BlG2 BlG2 BlG3 BlG3

0 Ai KiCl KlC2 0 KIC3 0 KlCr

B2G1 B2G1 A2+B2G2 B2G2 B2G3 B2G3 0

K2C1 0 0 A2-K2C2 K2C3 0 K2Cr 3

B3G1 B3G1 B3G2 B3G2 A3+B3G3 B3G3 0

K3CI 0 K3C2 0 0 A3-K3C3 K3Cr

BrGl BrGl BrG2 BrG2 BrG3 BrG3 Ar

*(48)

It is now readily apparent how spillover can cause overall

instability in the system. For example, notice how the

control gains G2 and G3 make up part of the component state

equation for controller no. 1 (row 1). The same type of

spillover from the two other control gain terms appears in the

component state equations for controller no.'s 2 and 3 (rows 3

and 5). Furthermore all the control gains appear in the

component state equation for the residual modes, to which no

*control was to be applied. If all such terms could be elimin-

ated, spillover would not occur. It is not really necessary,

however, to eliminate all such terms.

What is needed is a block triangular form for the major

matrix. Since the diagonal terms of the major matrix already

have "stable" system eigenvalues by design, it is only neces-

sary that the matrix be block triangular. This is true

because the eigenvalues of a block triangular matrix are the

same as those of its diagonal blocks. Thus two types of

triangularization can be made to eliminate sufficient block

terms and effect suppression of spillover. An upper block

3-14



triangularization for suppression would require the following:

BiGk = KiCk = 0 k = 1,...,N-1 (49)

i =...,N

f A lower block triangularization would require

BiGk = KiCk = 0 i = 1,...,N-1 (50)
k = iI,.. .,N

Notice the residual terms are ignored. This means spillover

between the residual modes and the controlled modes is not

suppressed and the system stability and/or control performance

may be affected. Table 3-1 shows which terms to eliminate for

upper or lower block triangularization.

Table 3-1

Suppressing Spillover Among Three Controllers

Upper Triangularization Lower Triangularization

B2G1 = 0 BjG2 = 0

B3GI =0 BjG3 =0

B3G2 = 0 B2G3 = 0

K2CI = 0 KIC2 = 0c
K3CI = 0 KIC3 = 0

K3C2 = 0 K2C3 = 0

Before discussing the technique of triangularization

involving transformation matrices, mention should be made of

an alternative way to effect triangularization. Aldridge (3)

pointed out that it had been shown previously that by proper

placement of sensors/actuators and selective assignment of

.1
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modes to controllers, the three-controller problem could be

reduced to a two-controller problem. This comes about through

the changes effected in the control mapping matrix 3 (for

actuation) and the output mapping matrix C (for sensing).

With proper modal assignments one controller could be made

orthogonal to the other two, thereby eliminating spillover

for that controller. No attempt will be made in this invest-

igation to configure the structural model for this. However,

such a discussion serves to introduce the next subsection.

The above discussion on sensors/actuators introduces the

Er- idea that selection of them impacts the control problem.

Earlier it was pointed out that an observer was clearly neces-

sary due to an insufficient quantity of sensors to feed back

* all the states. The next subsection will detail how, due to

the triangularization, there is indeed a minimum number of

-' sensors and actuators required for complete observability and

* controllability, which are themselves required for the forma-

tion of the observer and control gain matrices.

( Sensor/Actuator Requirements

Control or observation spillover among the various

controllers may be eliminated by constraining the various

controller and observer gain matrices. Using the control term

BiGl as an example, notice that if the columns of G1 are

constrained to lie in the null space of Bi, then the product

is zero. The product could vanish for all values of i*I if G1

lay in the null space of the matrix B2N defined as follows:
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* B2

B2N= (51)

BN

*• The null space of this matrix B2N has dimension P2N defined as

P2N = (na - r2N) (52)
-'I

where

na t number of actuators

r2 N  rank of B2N S min( n2 + n3 + ... nN, n&)

* Since the columns of G 1 lie in the null space of B2N of

dimension P2N, the number of linearly independent columns of

GI is also P2N-

* As Aldridge pointed out, the number of actuators must

exceed the rank of B2N to have B2NG 1 = 0 Without this

condition being met, no transformation matrix to do this

( exists. If B2N is full rank, the number of actuators needed

will be

N
na > L ni (53)

i=2

whereas if it is rank deficient, then

na > r2N (54)

Similarly, the required number of sensors is, for some C2N
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with linearly independent columns,

N-i
Es > ni (55)

and for linearly dependent columns,

ns > r2N (here r2N is the rank of C2N) (56)

*The above are for an upper block triangularization. Noting

the conditions of Eq (50), the required numbers of actuators

and sensors for a lower block triangularization, assuming B2N

and C2N are full rank, are respectively

N-1
na > ni (57)

i=1

N
* n s > ni (58)

i=2

Satisfying Ineq (51) through (58) provides complete

controllability and observability of the controlled modes and

ensures that spillover among them is suppressed. To give an

example, if the finalized control model has three controllers

each containing ten modes, and there are no residual modes, at

least twenty-one sensors and twenty-one actuators are needed

to completely control and observe such a system. This inves-

tigation satisfies the requirements on sensors and actuators.

Based upon the above conditions being met, the technique

* of generating the transformation matrices follows.

c3-18
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IV. Transformation Technique

This section describes how the major matrix can be block

triangularized, thereby eliminating the observer and control

0 spillover terms among controllers. The discussion will

describe the determination of transformation matrices to

eliminate the control and observation spillover terms. These

*matrices are referred to respectively as T and L.

For a configuration using a single controller, the

spillover terms to be eliminated are BsG and KCs. The sub-

q script s refers to those modes to be suppressed. The trivial

solution that G = K = 0 is unacceptable because it means the

control and observer feedback loops have effectively been

*severed by turning off all gain. The system would be without

feedback control inputs, and therefore would simply return to

the case of a structure regulating itself through natural

*damping. The objective here is to find a solution (transfor-

mation) such that BSG = 0 and BcG 0 0 as well as KCs

=0 and KCc 0 0 .

cBefore proceeding, it is worth mentioning here that some

attempt could be made to include suppression of some or all of

the residual modes. Varhola (7) actually did this for a

smaller order model with a single controller. Such

suppression will not be addressed in this investigation,
however, as it will be assumed that the multiple controllers

already have enough to handle in suppressing spillover among

themselves. The residual modes are presumably beyond the
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capacity for control or suppression, and in fact may not even

be known in a real structure.

Returning now to discussing multiple controllers, and

bearing in mind the conditions cited above, attention will now

be focused on control spillover suppression. The Bs matrices

can take the form of Eq (51) repeated here:

0 B2

B2N• (51)

BN

Recall this form was based upon the condition of Eq (49) for

upper block triangularization:

- BiGk = KiCk = 0 k = 1 .... N-1 (49)
i = 1...,N

saying that, for example, given N controllers, the columns of

Gi must be made orthogonal to the (N-1) rows of the B i

matrices which were combined into B2N above. This says that

the columns of GI are constrained to lie in the null space of

B2N. This is just an example of the what the objective is.

The discussion will continue using the generic term Bs to

represent any control mapping matrix (or set) that does not

match in index the control gain matrix of interest.

The control transformation matrix T is such that
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BT = 0 (59)

It will soon be apparent why, but Eq (59) is introduced here

to point out again the conditions for the existence of T.

From Eq (59) it is seen that the row dimension of T must match

the column dimension of Be , which is na , the number of

actuators. The column dimension of T is found by referring

*to the conditions cited in Section III: namely, its column

dimension must be

P2N = (na - r2N) (52)

where it is seen that r2N must be at least as big the number

of modes to be suppressed: here nm. Thus the dimensions of T

* are na by (na-nm), given the conditions cited on linear inde-

pendence of the rows of Bs.

The application of T will now be illustrated. Consider a

* system containing controlled and suppressed modes as follows:

kc AcXc * Bcg (60)

s = Asxs * Bag (61)

where

u = Gc~c (62)

It is necessary to eliminate the Bay term of Eq 61) so that

the system described by Eq 61) no longer admits to any of the

p b control applied to the system of Eq (60). To eliminate this

term it is necessary to find a matrix T such that BsT 0
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while BcT 0 0 Let this transformation matrix T be used to

define a new control v, such that

u = Tv (63)

Substituting Eq (63) into Eqs (60) and (61), and renaming the

term BcT as B* while recognizing that the term BsT is now just

zero, results in a transformed system in which spillover has

been suppressed:

c= Acc Bv (64)

*a As~s (65)

In the same manner as the construction was made of the

feedback control vector u. the new control vector is

v = G*Rc (66)

The determination of T will now be discussed.

T is determined through singular value decomposition of

the matrix Bs (3), which has dimensions nm x na. The matrix

can be decomposed as a product of three matrices:

Bs WZ VT (67)

where

W • an nmxnm orthogonal matrix of left singular vectors

V • an naxna orthogonal matrix of right singular vectors

Z • an nmxna matrix containing the s singular values of

Bs in the following form:
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SS :0

... (68)

0:0

where

• 0
S = . (69)

00

The number of non-zero singular values s of Bs equals its

rank, and they are all non-negative. If Bs is of full rank.

then s = min(na, nm)

The matrix W is partitioned into

W I Ws I Wr ] (70)

where

Ws an nmxs matrix of left sinqular vectors associated
S

with the non-zero singular values

Wr • an nmxr matrix of left singular vectors associated

with the zero singular values

and

nm s * r (71)

The V matrix is partitioned in a like manner as

V = C Vs I Vp 3 (72)

where
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Vs * an naxs matrix of right singular vectors

associated with the non-zero singular values

Vp e a naxp matrix of right singular vectors associated

with the zero singular values

and

na = s + p (73)

Since the V matrix is an orthogonal matrix, see that

vsTvp = 0 (74)

allowing the following construction:

BsT e 0 = WsSVsTT (75)

Examining Eqs (73) and (74) for similarities, see that

T = Vp (76)

would satisfy the equality based upon Eq (74). Necessarily

Vp 0 0 , else the transformation matrix is just a matrix of

zeroes--an undesirable result. Now that the transformation

matrix T has been determined, it remains to see how the new

control gain matrix G* is found.

The G* matrix is found in the same manner as described in

Section III in the subsection on Modal Control. It is the

optimal solution

Gi* = -[R 1 I*-[Bi.]TSi (77)

in which Si is the solution to the steady state algebraic
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matrix Riccati equation:

StAi + AiTSi - SiBi*[Ri]-l[Bi*]TSi - Gi = 0 (78)

wherein the subscript i refers again to a particular controller.

With the appropriate substitutions, it is now apparent that

the form of Eq (64) can be reiterated to show the form of the

state equation for any controller i, after suppression:

ki = Aiji BiTiGi.Ai (79)

Similarly, substituting CST for Bs, KT for G. and L for T in

the above development, results in L equalling Vp. Again, the

number of sensors must exceed the number of modes to be sup-

pressed.

This section completes the description of equations used

in developing the control model for implementing in a computer

simulation. A brief discussion on how the time response is

computed is included in the following section, which describes
0

the actual computer program.
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V. Computer Simulation Implementation

This section will describe the operation of a FORTRAN

coded computer program which implements the equations of Sec-

tion III. The program is an updated version of that used by

Aldridge. Its capabilities have been altered to deliver time

response of the LOS deviations mentioned in Section II. As is

*often the case, a lengthy amount of time in this investigation

was devoted to understanding what the program does, how it

does it. and what changes could be made to enable it to output

qLOS time response data. The following discussion will briefly

describe how time response is generated.

The theory behind obtaining any form of time response is

* fairly straightforward. Hence it is included here instead of

Section III. Of interest is Eq (33), abbreviated here as

= IMAJM]z (80)

where the term MAJM replaces the large block matrix, called the

major matrix, shown in Eq (33). This is a commonplace

e shomogeneous first order matrix linear differential equation.

The solution of a scalar first order differential equation

z = az is simply exp(at), wherein t represents some time

differential. Analogous is the matrix solution to Eq (80):

exp(tMAJMt) . To use some common terms, the state z can be

found for any time tf by propagating the state at a previous

time t i forward (or background) through multiplication by the

fundamental matrix (8), known also as the state transition matrix,
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here called [STM3, where
e

(STM] = exp(UHAJM](tf - ti)) (81)

Thus

Zf = ISTMHzi (82)

saying that a fixed time differential t can be used to propa-

• gate the state incrementally ad infinitum.

Once the state vector can be output at discrete time

points, it is only a matter of converting the state at a

edesired stopping point from modal coordinates to physical
coordinates. The desired form of the physical coordinates in

this investigation is the LOS vector described in Section II.

*This version of the program outputs a tabulation of LOSX.

LOSY, Defocus, and Radius vs. time with the rest of the

*printed output, as well as just Radius and Defocus vs. time on

O another output file for plotting. A description of the pro-

gram's capabilities now follows.

The capabilities of the program were tailored to the

[ investigation. The :er must obtain the appropriate products

of the actuator and sensor mapping matrices with the modal

matrix beforehand (see Eq (14)). Ref (7) provides the code to

read in any modal, sensor mapping, and actuator mapping

4 matrices. The program accepts only modal coordinates for

initial conditions, although once again, if reasonable physi-

cal initial conditions could be specified, Ref (7) contains

code for their input and conversion to modal coordinates.
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9

The Q weighting matrix is assumed to be diagonal and therefore

only its diagonal is to be input. A complete matrix could be

formed simply enough, but was not of interest in this investi-

gation. Also the control weighting matrix. R, is assumed to be

an identity matrix. Extensive revision of. the code would be

needed to include a non-identity R matrix if it were of interest.

These limitations were of little consequence to this investigation.

The program can operate with either three or four control-

lers specified. If three controllers are specified, then a group

of modes can be designated as residuals in place of the group

that a fourth controller would have controlled. This group may

number as few as zero (no residuals). Thus three controllers

with or without residuals or four controllers with no residuals

* can be run. In either case, the user may also specify other

options: (1) time response (with LOS as output), (2) roots

(eigenvalues) of the closed-loop (overall) system and the open-

* loop (individual) systems--controlled, error, and residual

states, or (3) both time response and eigenvalue analysis.

Moreover, the program makes both an "unsuppressed" and a

"suppressed" pass, and any of these three options can be selected

for each pass as desired. A sensible choice in the early part of

an investigation would be to select -2- for both the unsuppressed

and suppressed passes until the user is satisfied with the place-

ment of the closed-loop roots. Later the time response option

could be chosen. This is because the subroutine MEXP (9). called

only when time response is desired, requires a relatively large

amount of central processing time. All options are initiated by
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input data. A guide illustrating the form and purpose of all the

0 required input data is included in Appendix B.

As the program executes with its specified options. the

output contains many statements analogous to prompts in an

interactive session. This simply allows the user to follow

the execution and recollect input data when reading the

output. Much of the input data is restated in the output.

* Execution begins with the dimensioning of the numerous

indexed variables the program uses as well as initializing of

some important parameters used by the various subroutines in

C properly handling the indexed variables. Thus dimensioning

need not be altered anywhere except in the main program.

Comment statements in the code provide guidance on specifying

* these parameters and dimensions before compilation.

As a final note, the program is supported by several

* facility routines from among the International Mathematical

* and Statistical Library (IMSL) routines. Their code is not

included in the listing in Appendix B.

5-4



VI. Investigation
4

As indicated in Section I, the main objective of the

investigation is to see how the assignment of various groups

of modes can affect the LOS time response, and see if any

general conclusions might be warranted. The foundation for

such an investigation is based upon certain facts regarding

the basic control model setup.*
As set up, this control problem recognizes, as is often

the case, that there is a limited number of sensors/actuators

that can be practically installed, and the placement of these

may not provide all the observability and controllability

desired. For a multiple-controller configuration, however,

the described block triangularization of the major matrix*
results in the various controllers commanding varying degrees

of controllability and observability. To be sure, there will

S.' always be modes which are not directly controlled or observed.

A large space structure with many degrees of freedom must be

modelled with a greatly reduced number of modes to accommodate

the limited capacity and/or speed of an onboard computer

acting as the controller. Thus it is of interest to see how

the choice of modes to control as well as the assignment of

these modes in a multiple control scheme affects system per-

formance.

For this version of the Draper-2 model there are twenty-

one pairs of collocated sensors and actuators with fixed

* placements. Three controllers were used in the control model.
4.
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It was assumed each had the computational capacity for four

modes. Thus each was assigned four modes. A group of eight

modes was considered as residual to represent the unmodelled

modes of a real structure. Thus there were twenty modes in

total representing a truth model of the structure. With these

figures in hand, the relative degrees of controllability and

observability of the individual controllers can be evaluated.

Examining Table 3-1 and noting this version of the simu-

lation program performs a lower block triangularization. a

pattern is seen as to the amount of suppression of control or

observation spillover there must be for a particular control-

ler. To suppress observation spillover from the other eight

modes assigned to Controllers 2 and 3, Controller (Ctlr) 1

must use eight of its sensor inputs, leaving it the controller
S

with least observability. Ctlr 2 uses only four of its sensor

inputs to suppress the modes of Ctrl 3. It has more observ-

ability. In contrast, Ctlr 3 uses eight of its actuators to

suppress control spillover from the other eight modes in Ctlrs

1 and 2. It has the least controllability. Once again, Ctlr

2 uses only four actuators in suppression, giving it more
mC

controllability than 3. Summarizing, a three-controller con-

fiquration with lower block triangularization exhibits one

controller (Ctlr 1) commanding the most controllability, one

(Ctlr 3) commanding the most observability, and one (Ctlr 2)

commanding a median amount of both. Thus the model setup with

three controllers allows a straightforward study involving

assigning the various groups of modes permutatively to the

6-2

6'V

.,~~~U X.~*** 4 ,



three controllers. A fourth (residual) group provides more

realistic insight into the overall stability and time

response, and was thus included. To reiterate the underoin-

ning of this investigation, stability can be regarded a funda-

mental requirement for any large space structure control

system, but time response, in particular LOS pointing here,

may be the driving specification.

The investigation began with a search for candidate modal

rankings which could be divided into groups for assignment.

One way to rank order is simply to put the mode numibers in

ascending order (AO). This might be the situation in the

early stages of a design study when little is known of the

relative effects of each mode on LOS performance. The premise

is well known that many of the high frequency modes can be

expected to lie outside the control bandwidth, and may be

= simply truncated (removed from the model). An excellent

alternative ranking was made by Varhola (7). It is the so-

called modal cost ranking (MC). It ranks the relative effect

of a mode on any index of interest against the other modes.

Similarly, another scheme called internal balancing (IB) can be

used. Varhola generated an MC ranking for LOS performance and

an IB ranking for the ability of the sensors/actuators to

affect a particular mode. In other words, the second ranking

indicates the sensitivity of a mode to control and control

spillover, whether it contributes to LOS performance or not.

The AO ranking for the investigation was made by simply

taking the three rigid body rotation modes plus the next
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seventeen in ascending order of frequency. The MC ranking was

made by selecting the twenty highest ranking modes among those

with a mode number falling within the first twenty so that

they would match with the AD ranking. The modes are con-

sistently numbered 1 through 20, with the rigid body transla-

tion mode numbers having been dropped. The rank orderings

obtained are as follows:

AD: 1.2.3,4 1 5,6,7,8 1 9,10,11,12 1 13.14,15,16,17,18,19,20

MC: 1.2.3,20 1 4,7,10,6 1 9,19,11,12 1 13,18,5,8,15,14,17,16

IB: 1,2,3,7,4,8,5,10.20,6,13,9,12,11,19,18,15,14,17,16

The dividing mark between the groups indicates how the modes

were grouped. Notice the first group (Group 1) under both AD

and MC analysis contains the three rigid body rotation modes.

The fact that they are in the MC Group 1 means they are of top

importance to the LOS performance. Notice also no groupings

are presented for the IB ranking. This is because this rank-

ing was used only in an auxiliary fashion and was not directly

examined in the investigation. However, to illustrate its

usefulness, notice that it also lists modes 1. 2. and 3 high-

est. This is good news for effecting control as it means

these are the three modes most sensitive to control.

The AO and MC groups were assigned to various controllers

in a permutative fashion. For each ranking there were six

possible combinations: 1-2-3, 1-3-2, 2-1-3, 2-3-1. 3-1-2. and

3-2-1. wherein the ordering implies the ordinal number of the

controllers. For example, the third combination, 2-1-3.

C7 implies that the modes from Group 2 were assigned to Ctlr 1,
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the modes from Group 1 to Ctlr 2, and the modes from Group 3

* to Ctlr 3.

For each run the initial conditions were such that the LOS

Radius was unity at time zero. (Note that no units of measure

need apply since modal coordinates are used.) All the runs

were also set up to cover 20.0 seconds of propagation with a t

value of 0.05 seconds. This value of t would definitely meet

the requirements on sampling rate to reproduce with accuracy a

time history of LOS motion. Some preliminary runs were made

to find suitable values for the twenty elements of the Q matrix

diagonal. (During this stage of the investigation an error

was discovered in the subroutine FORMQ1 algorithm which forms

the diagonal Q matrix. The algorithm is now correct.) The

objective was to apply a fixed Q matrix such that all

combinations run would remain stable and provide meaningful

data on time response. After some trial and error, but with

much insight gained into how each mode plays into the

stability and movement of the closed-loop roots, a final set

of 0 values was determined. They are given according to

ascending mode number as follows: 200 (x3). 500 (x7), 2500,

3000. 500 (x6), 15000 (x2). These values provide for a stable

suppressed system for both the AO and MC cases.

With the control model. set up, six runs were made for the

AO and MC cases. In all twelve runs both time response and

eigenvalue analysis were made. It was of interest to see how

the c.3sed-loop suppressed roots shifted from their original

locations where they had the given damping ratio of 0.005.
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I But it was more important to see if any pattern might be

revealed by the time response plots to warrant general conclu-

sion about the time response performance of a large space

structure control-configured as described when various modal

assignments can be made. The results of the investigation

follow.
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VII. Results

Figures 7-1. through 7-12 on the following pages are plots

of the closed-loop roots of the system after suppression. For

the complex roots only the root with the positive imaginary

part is plotted. The controlled modes have roots for both the

controlled states and the observer error states. Each resid-

ual mode. of cou~rse, has only a single root. The roots were

obtained by matching them with the identified roots of the

4 individual (open-loop) systems as generated by the program.

With the small value of damping ratio of 0.005 before closing

the loop. the mode can be identified by recognizing its fre-

quency is approximately equal to the imaginary part of its

* root.

In all cases the selected values for the Q matrix

diagonal resulted not only in a stable system regardless of

modal assignment, but also resulted in signifeicant damping

improvement of the controlled modes. This can be seen in the

spread of the roots away from the constant damping ratio line

of 0.005. As a further result of selecting as residual the

eight lowest ranking modes under MC analysis and the eight

highest frequency modes under AO analysis (frequency trunca-

tion), the residual modes remained quite steady. Their

damping ratios hardly deviated from the original value of

0.005. In no case did any damping ratio decrease signifi-

cantly below 0.005 whether for a controlled, error, or resid-

ual state. To be noted here for later discussion is the fact
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that the root f or mode 5 (imaginary part of approximately

1.65), which is a residual mode using MC ranking, actually

moved left under all six combinations.

Consistent behavior of the placement of the roots of the

of the error states relative to those of the controlled states

for a particular controller is exhibited. The controller with

most observability, Ctlr 3, consistently achieved greater

40 damping of the error states than the controlled states. On

the other hand, Ctlr 1 consistently achieved greater damping

of the controlled states due to its greater degree of

controllability. Ctlr 2. however, did neither in a consistent

fashion. Its roots shifted so drastically after closing the

loop that it was difficult to identify or distinguish between

the controlled and error states--hence the notation on the

figures.

As previously mentioned, under MC analysis mode 5

(residual) was made more stable. In contrast notice that mode

11 (controlled, imaginary part approximately 7.69) did not

move away from the original damping ratio despite a relatively

large weighting factor of 2500. This was true in both MC and

AO analysis. The explanation of these two phenomena is found

in the IB ranking. Recall this ranking gives the relative

sensitivity to control of an individual mode regardless of its

importance to LOS. Despite the fact that mode 5 was of little

importance to LOS and was therfore made residual, it was still

quite sensitive to control. Thus spillover moved its root

significantly. On the other hand, mode 11 may have been
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ranked slightly higher than mode 5 for its contribution to LOS.

* but it was relatively insensitive to control. Thus its root

did not move much.

With these general comparisons made among the eigenvalue

* plots. the telling results of the overall system LOS per-

formance can be examined.

Figures 7-13 through 7-24 on the following pages are the

time response plots of both the Radius and Defocus. As in

previous investigations Defocus was found to be of little

consequence to the control problem. Its time dependent ampli-

tude has been miniscule compared to that of the Radius.

Therefore it will not be discussed further here since, as

mentioned, all cases were set up to be stable and its time

response is relatively flat. The Radius' time response, how-

ever, was found to be highly dependent on modal assignment.

It should be noted that in some cases the Radius was increas-

ing significantly at the end of the time history. Since all

cases were previously shown to be stable. this result simply

means that a low frequency mode (or modes) was not well con-

trolled in these configurations and would take much longer to

damp out.

Comparing MC to AO analysis, the various combinations

usually exhibited the same general behavior. When those modes

important to control because of their relatively high contri-

bution to LOS were assigned to the controller with most con-

trollability, Ctlr 1, the amplitudes were damped out in a well

behaved fashion. However. notice that nearly equivalent time
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response was achieved when the modes of Group 3 were assigned

to Ctlr 2 as seen in Figs 7-13. 14, 19, and 20. It can be

seen that as Group 1 is shifted to Ctlr 2 and then Ctlr 3. the

time response deteriorates. If the symbology of the modal

combinations is likened to a cardinal number, one might be

tempted to conclude that the lower the numerical value of the

combination, the better the time response. Combination (Comb)

1-2-3, analogous to the number 123. exhibited very good over-

all time response, while Comb 3-2-1 exhibited poor behavior.

Notice, however, that Comb 3-1-2 (Fig 7-17) exhibited better

behavior than combination 2-1-3 (Fig 7-15). Conversely. Figs

7-22 and 24 show Combs 2-3-1 and 3-2-1 had nearly identical

time response. (The tabulated values differed only in the

third decimal place.) Indeed, the best time response for MC
*p

analysis is seen in Fig 7-14 to be Comb 1-3-2 and not 1-2-3.

Though the time response behavior of the various

combinations bore similar comparison between the MC and AO

analyses, it was not the case that MC analysis resulted in

significantly better time response. When the best time

response cases (Figs 7-13 and 19) are compared, it is seen

simple frequency truncation (AD analysis) has done as well for

this model as the effort of making the Modal Cost ranking, if

not slightly better. Notice the rankings given in Section V!

are quite similar and rank the three rigid body modes highest.

The relative value of these modes was so large that Varhola

* could not scale them onto his ranking charts. In summary of

the comparison of AD to MC time response, the two analyses did
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not exhibit a clear pattern of improvement in time response by

combination. In order of improving time response the MC

analysis results are as follows: Combs 2-3-1, 3-2-1, 2-1-3,

3-1-2, 1-2-3, 1-3-2. But for AO analysis the ordering is

different: 3-2-1, 2-3-1, 3-1-2, 2-1-3, 1-3-2, and 1-2-3.

With the above results in mind a discussion of conclusions to

be drawn is at hand.
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VIII. Conclusions

A number of conclusions can be drawn from the results of

this investigation.

From the eigenvalue plots under MC analysis, it is seen

that multiple controllers suppressing spillover can effec-

tively control a high frequency mode with little or no adverse

effect on lower frequency modes. For example, mode 20 was

damped without driving other modes unstable.

However, these same plots show that mode 5. a residual

mode, was also affected--by spillover. Though it was damped

in this investigation under conditions of these gains, it

*might just as well have been driven unstable by the spillover.

It would be better to be able to predict residual modes will

maintain their original damping rati-os after suppression so as

to not be of concern. Thus it should be concluded that Modal

Cost analysis alone is a risky approach to take. It should be

accompanied by Internal Balancing analysis to reveal problem

areas. These arise when a mode has a high IB ranking but a

low enough MC ranking to leave it as a residual mode.

r I analysis can also reveal candidate modes for removal

from the controlled groups in exchange for just such problem

modes. For example, mode 11. exhibiting little response to

C_ control, might well be replaced by mode 5. An advantageously

greater range of gain values (0 matrix weighting v ilues) might

then be possible because it could be expected that the

residual modes would remain "steady." It is now obvious that

8-1
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a better control configuration would have the IB ranking

identical to the MC ranking. The designer would accomplish

this by moving sensors and actuators to increase or decrease

their effect on a particular mode, resulting in changing the

IB ranking. An even greater range of gain could result

because now the single identical ranking would simultaneously

show those modes most contributory to LOS also being those

most sensitive to control, and equally important, those

contributing little to LOS being relatively insensitive.

In addition to the drawbacks of applying MC analysis

alone as mentioned above, another conclusion to be drawn is

that MC analysis alone does not necessarily offer significant

time response improvement over AO analysis, which is the

simplest approach to take. In this investigation. AO Comb

1-2-3. the simplest ordering and assignment possible, resulted

in the best time response. It should be noted, however, that

the result may have been due to the overwhelming influence

of the three rigid body modes on LOS performance.

in summary, for any modal assignment approach taken.

unsuppressed residual modes will limit the amount of gain that

can be applied to improve time response. Though various

analytical rankings can be made and used together to effect

significant improvement in time response, this investigation

revealed no clear pattern among the analyses to predict

behavior based on modal assignment. The results and conclu-

sions do, however, provide good ground for further investiga-

tions, as described in the next section.
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IX. Recommendations

Several further investigations can stem from this one.

As mentioned. mode 5 was found to make little contribution to

LOS while being quite sensitive to control spillover. At the

same time mode 11 had somewhat opposite characteristics.

These two modes are good candidates to lead into an investiga-

* tion of the effects on time response and stability gain mar-

gins for this configuration under mode-swapping conditions

when the various cases of modal assignment combination are run.

There are other modes, with less pronounced characteristics,

which would also make good candidates (e.g., modes 8 and 12).

Some investigations might also be carried out on the

effects of new placements and orientations of the sensor/

actuator pairs based on the modal rankings of Ref (7). This

investigation could include the addition of code to the simu-

lator for disturbance rejection. Moreover. such investiga-

tions could include studying the effects of ncise in the

sensor data.

A similar investigation to this one begs to be run with

an increased number of modes. This investigation used for

continuity of analysis a twenty-mode truth model to search for

general patterns of modal assignment effects. More revealing

data may be obtained if the number of modes assigned to each

controller could be increased and if simultaneously all

significant residual modes could be included in the

I ~ suppression. Doing this might show that there are some clear
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patterns to the effects of various modal assignments not

revealed in this investigation. As mentioned, the over-

whelming value of the rigid body modes in the rankings may

have obscured such patterns.

Along these lines the code could be revised to be more

flexible in its dimensioning. Presently the program must be

recompiled if the quantity of modes changes. This is due to

the requirement that certain of the routines (9) have exactly

dimensioned arrays, as opposed to the IMSL routines which do

not require this. There was not time in this investigation to
I

make these revisions, but they would greatly enhance the

flexibility of the program and the speed with which further

investigations could be carried out.

C
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E I G E N V A L U E A N A L Y S I S S U M M A R Y (INVERSE POWER METHOD)

* NUMBER OF EIGENVALUES EXTRACTED 54

NUMBER OF STARTING POINTS USED ....... 1

NUMBER OF STARTING POINT MOVES ....... 0

NUMBER OF TRIANGULAR DECOMPOSITIONS . . . . 61

TOTAL NUMBER OF VECTOR ITERATIONS ..... 673

REASON FOR TERMINATION .. ........... .7*

LARGEST OFF-DIAGONAL MODAL MASS TERM . . . . . 2E-13

MODE PAIR .............. 
. .

. . . 37

NUMBER OF OFF-DIAGONAL MODAL MASS
TERMS FAILING CRITERION ........ .

( OR MORE ROOT OUTSIDE FR.RANGE.
SEE NASTRAN U.M. PAGE 3.4-12)
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ACOSSO MODEL EIGENDATA DUPLIXCATION AUGUST 13. 196 RELEASE APR. 1914 PACE 27

56 MODES AND FfREQUENCIES

R EA L EI GEN VA L U ES

MODE EXTRACTION EXIEVALUE RADIAN CYCLIC GENERALIZED GENERALIZED
* .NO. ORDER FREQUENCY FREQUENCY MASS STIFFNESS

1 31 -2.4S9"46E-05 4.969637-63 7.941255E-04 I .6666661.6 -2.46964SE-46
2 37 -1.357722E-05 3.6647276-03 5.6644261-64 1.066666.O6 -1.3577226-45
3 33 -1.111428E-6 3.33366M-03 S.36926E-64 1.000666."6 -1.1114266-41
4 31 -9.8264756-06 3.134721E-03 4. 99636-44 1.666666.Se -9.6204766-6
5 29 -9.5675531-se 3 6963771-63 4 .926636-64 1 .0069M.1 -9.5607636-65
a 21 -2.669691E-09 4.5715326-46 7.27662@E-06 1.0809M614 -2.08"691E-09
7 26 6.362744E-01 9.1442571-61 1.455354E-41 1.6666666.66 8.361744E-01
a 26 2.736091E-00 1.6536111.66 2.632122E-41 1.00006M."6 2.7356091E.60

N9 22 3.974426E.00 1.9935966.66 3.1729671-61 1.066666146 3.9744266.66
10 27 4.374011E-00 2ff 1665E.6 3.329992E-01 1.6666661.6 4.3746111.66
11 19 7.7547291.66 2.764731E.00 4.43203@E-01 1.0000ms1e6 7.7547296.66
12 26 1.310297E.01 3.630622E-09 5.776633E-41 1.666666.Se 1.3162671.61
13 23 1.334619E.01 3.6532436.66 5.6143171-01 1.666666.66 1.3346191
14 1 5912151E.61 7.696611.6 1.2237S1E.66 1.666666.46 5.912151E.61
1 16 6.674246E.01 6.169667.66 1.300233E.40 1.66666.9 6.674249E.01
16 14 7.1667961.41 0.466674E.66 1.347546E.00 1.006666.46 7.160796K.01
17 15 1.1632161.62 1.6613636.61 1.7269471.66 1.99669M."6 1. 169216K.02
1o 13 1.3656131.62 1.142722E61 1.6166966.66 1.6666666.6 1.3613E.42
19 11 1 .36666212 1 .142743E.61 1 .17326.66 1 .6666661. 1 .3662E.02
26 12 1.4@M9656.2 1.1669941.01 1.6691661.66 1.666666146 1.46696.9-2
21 9 2.2663611.42 1.460M2.01 2.3634921.66 1.6666666.6 2.26391E.02
22 6 3.626249E.02 1.9S79363E.01 2. 98S68 I .666666.6 3 .629249E.02
23 6 3 .992044E.02 1 .9965661.61 3. 175946E.09 1 .00866M.00 3.992044E.02
24 5 4.629673E.02 2.126279E.01 3.3672621.66 1.6666661.6 4.629673E.62

02S 1 1.061614E.03 3.243169E-01 5.1616621.66 1.6666661.6 1.61914E.03
26 2 1.092494E.03 3.30S1531.61 5.2603151.66 1.66666.6 1.092404E.03
27 3 2.449462E.03 4.949224E.61 7.876934E.00 1.6666661.6 2.4494626.03
26 4 2.6669661.3 6.699967E.01 6.1167551.66 1.6666661.6 2.66696.63
29 7 2.759142E-63 6.252764E.61 6.3666161.66 1.666666.66 2.769142E-63
36 1o 2.6999166.3 5.3656611.61 6.S766221.66 1.666666.66 2.999166.63

*31 17 3.6665691.63 5.637661E.01 8.01340ZE.09 1.6666661.66 3.66669E-63
32 24 3.066569E.03 S6376611.61 6.6134621.66 1.6666661.6 3.66696.63
33 28 5.682329E.03 7.1296461.61 1.134623E.01 1.666666.66 5.0623296.63
34 36 5.2196471.63 7.2242976.61 1.1497931.61 1.06666.66 5.2196471.63

*35 32 8.393349E.63 7.996842E-61 1.27256$.01 1.66666 6.3933466.03
36 34 7.2636771.63 8634663E.61 1.363161.61 1.666666.66 7.263877E-03
37 36 7.42614E.03 0.61662E.61 1.3714151.61 1.6666661.66 7.42614E.63
36 36 7.916148E.63 9.897269E.01 1.416044E.01 1.6666666.6 7.91614@E.03
39 39 9.671943E.63 9.934604E.61 1.652261.61 1.6666661.6 9.671943E.63

*46 41 1.019617E-64 1.6696666.2 1.697242E.01 1.6666661.6 1.6196171.64
41 46 1.078634E.04 1.039294E.02 1.6524611.61 1.666666E1.66 1.676634E.04
42 42 1.16766M.04 1.6214K1.02 1.6745341.61 1.6666666.6 1.1676661.4
43 43 1.161892E-04 1.17911E.02 1.716548E.01 1.6666661.6 1.161692E.64
44 44 1.254812E-04 1.120184E.02 1.7926261.61 1.6666666.6 1.264612E.04
45 46 1.436611.64 1.199263E.02 1.9671261.61 1.6666666.66 1.4366611.64

(40 46 2.2306671.4 1.4936151.02 2.377163E.61 1.666.00 2.2366671.64
47 47 2.353003E.04 1.53397GE.62 2.441399E.61 1.6666661.6 2.356396.64
46 46 2.666741.64 1.62796E.02 2.599991E-01 1.66866.6 2.6566746.64
49 so 2.743004E.04 1.6664671.62 2.634653E-01 16666666.66 2.743684E-04
so 49 2.757575E.64 1.6666951.62 2.642919E.61 1.666666.66 2.7575751.64
61 51 2.07296E.04 1.6949651.62 2.697620E.01 1.0666666.6 2.67296E.04
62 52 3.06467E.04 1.7476151.2 2.717134E.61 1.666666.66 3.664676.64
53 53 3.6764666.64 1.7539661.62 2.7915551.61 1.00066M.06 3.676466E-04
54 64 3.213660E.04 1.792662E-02 2.863094E.01 1.066066.06 3.213666.64
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ACOSSO MODEL EZOENDATA DUPLICATION AUGUST 13, 191 RELEASE APR. 1984
S

M0 MODES AND FRIEUENCIES

SORTED SULK DATA ECHO
CARD
COUN T .. 2.. 3.. 4.. 6.. 7. a.. 9 .10

I- BAROR 1.6 6 .0
2- CHAR 1 201 1 2
3- CBAR 2 266 1 3
4- CHAR 3 206 2 3
6- CHAR 4 216 2 4 .6 1.6 .6 1
a- CHAR 6 20 3 4
7- CHAR 6 206 A S .6 1.6 .0 1
a- CAR 7 266 4 a
9- CHAR S 266 3 6 .6 1.6 . 1

to- CHAR 9 266 6 a
t1- CHAR 10 266 5 7
12- CHAR I11 2666M
13- COAR 22 266 1 8

14- CH3AR 13 266 2 9
is- CHAR 14 266 3 16
16- cHaR 16 200 s 11
17- CHAR 1 266 6 12
1- CHAR 17 266 7 13
19- CHAR 1 266 3 8

26- CHAR 19 266 2 a
21- CHAR 26 266 3 9

22- CHAR 21 266 4 9
23- CHAR 22 266 4 11
24- CHAR 23 266 s 12
25- CHAR 24 200 S 23
26- C:AR 25 266 6 13
27- CHAR 26 26 12 41
28- COAR 27 266 6 41
29- CHAR 23 266 t 41
30- CHAR 29 266 3 41
31- CBAR 36 266 a 9
32- CBAR 31 266 6 is
33- CHAR 32 266 9 16
34- CHAR 33 206 9 40
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ACOSSO MODEL EIGENDATA DUPLICATION AUGUST 13, 196 RELEASE APR. 1984

50 MODES AND FRIEQUENCIES

SORTED BULK D A T A EC H0
CARD

*COUN4T . 1. 2. 3. 4. 5. 6 .. 7. 8. 9. 16.
35- CHAR 34 266 16 46
36- CBAR 35 266 11 46
37- CHAR 36 216 12 46
36- CHAR 37 210 9 11 .6 1.6 .6
39- COAR 38 216 19 12 . 1 i.e .9
40- COAR 39 20 11 12
41- CHAR 46 210 11 13
42- CHAR 41 266 12 13
43- COAR 42 316 14 15
44- COAR 43 316 14 16
46- CBAR 44 316 16 15
46- CBAR 45 36 17 16
47- CHAR 46 310 17 19
4:- CHAR 47 316 i 19
49- CHAR 54 366 26 27
so- CHAR 56 316 26 26
51- CBAR s6 3W6 27 26
52- CHAR 67 3W 29 36
63- CBAR 56 300 29 31
54- CHAR S9 316 36 31
Ss- CBAR 66 301 27 29 .6 1.6 .0 1
5- CHAR 61 316 27 36
57- CHAR 62 316 26 36 .6 1.6 .6
6- CHAR 63 316 27 36
59- COAR 64 316 28 37
so- CHAR 65 300 30 39
at- CHAR 66 316 29 36
62- CHAR 67 316 29 36
83- CHAR 68 360 27 37
64- COAR 69 300 26 39
as- CHAR 76 316 36 38
so- CHAR 71 316 36 37
67- CBAR 72 316 37 39 .6 LU . 1
as- CHAR 73 306 39 38
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ACOSSO MODEL EIMMATA OULICAT1ON AUGUST 13. 196S RELEASE APR- 1364
0

S aR rEO SU LK 0OA rA E CHO0
CAND
COUNT . . 2 3 4 5. 7.. 9.. to.. 1 .

so- cam 74 3"6 " 36 . 1.0 . 1
70- CBAR 75 36 37 30
71- CAR 76 466 a 14
72: CA 77 406 to 14

* 72- c¢A 76 46 1o 16
74- CBAR 79 466 16 9
76- CAR of 466 9 1
76- CUAR 61 400 11 17
77- cUA 02 466 11 18
70- CUAR 63 466 12 16
79- CSAR 64 466 12 19
w6- Cam 6 4w 13 19
$6- cam o 46 13 17
62- CSA I7 400 14 26
03- cULa m 6 466 14 26

c 4- C A o 9 463 10 23
6- COAN so 46M 16 27
so- CSA9 91 466 15 27
87- cmN 92 466 15 26
ft- Colm 92 466 17 29
19- ClAN 94 4M6 16 29
w6- ClAM 95 466 1 36

* 91- ClAN 96 466 19 30
92- ClAN 97 466 19 31
92- ClAN 9 466 17 31

*94- ClAN 9is6 1 32
9R- inA3 16 4m 16 34
W- ClAR 11 466 17 33

97- COlA 192 466 to 36
9- CUAN 111 466 26 32
96- C8AN 112 466 27 32

, 16t- ClAN 113 466 27 33
191- CBAN 114 466 29 33

102- CSAN 116 44 31 33
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* ACOSSO MODEL EIGENDATA DUPLICATION AUGUST 13, 1906 RELEASE APR. 19"4

se MOES AND FREQ.UCIES

SORTED SULK DATA ECHO

cf.. . 13 4 5.. 6.. 7.. 6 .. 9.. 1.
16t- cSam i16 4"6 32 33 .0 . . 1
104- com 117 46 26 34
t66- CPU 11 466 26 14
t166- CPA 119 46 36 34

-o CIM 126 40 30 35
166. CPU 121 400 31 35
160- COAR 122 40 34 36 .6 I'e .0 1
i1s- Ca 123 40 32 36

111- C(AR 124 40 33 30
112- CSAR 126 40 34 37
113- CBAR 126 466 35 39
114- ca 127 360 26 37
11- ca 126 366 26 36
116- CAU 129 36 31 39
117- CPU 136 366 31 30
its- Ca 131 66 48 49 .6 1.0 .6 1
113- Ca 132 S6e 49 so .6 1.6 .0 1
126- cam 133 e s 1t .6 1.6 .6 1
121- CPU 134 See 61 62 .6 1.6 .6 1
122- Com 135 566 62 43 .6 1.6 .0 1
123- COAR 136 Se6 46 63 .6 1.6 .6 1
124- CAR 137 566 63 54 .6 1.6 .6 1
125- ca 136 6e 54 6 .6 1.6 .0 1
126- cam 136 See 55 Se .6 1.6 .6 1
127- CBAR 140 566 6 57 .6 1.0 .6 1
126- CBAN 161 406 U 16
129- CELASf 142 6.79E3 4 1 42 1
136- CELAS2 143 6.79(3 4 2 42 2
131- CELAS2 144 6.79E3 4 3 42 3
132- CELA12 145 6.79(3 3 1 40 1
133- CELAS2 146 5.79E3 3 2 46 2
134- CELAS2 147 5.7013 3 3 46 3
136- CELAS2 146 6.79E3 6 1 47 1
136- CELAS2 149 6.79E3 6 2 47 2
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*ACOSS MODEL EIGENIATA DULCATION AUMQST 13, 1966 RELEASE AP*. 1964

60 MOME AND FREQUENCIES

SO0R TE 0 I SUL K D A TA E CHO0
CARD

137- CELAS2 166 5.79E3 6 3 47 3
131- COMWI 691 27 376.

*130- C0112 m6 23 376.
144- COM2 163 3 375.
141- CONM2 664 36 375.
142- COlMl 666 32 SM1.
143- CONU2 W6 33 sS.
144- CNM SO7 34 266.
145- COlbil SM 36 250.
146- coma 16 9 SM6.
147- C0NW2 514 is M6.
146- CONM2 611 it SM6.
140- CGw 512 12 66m.
166 CONM 526 14 6.6
151- CONME 521 i5 17.6
162- CW 522 16 07.9
153- CNM 123 17 17.0
154- CNM 624 is 17.6
165- C01M 623 1t 6.0
166- CO2 644 44 3666. .644
157- .644 2.1GE3 2.10E3 4.2613
156 cOlas 643 46 99.00 .640
169- .546 270.6
1SS- ComaSa 5 so6 1016.6 .566
162- .6mma 16 a 06-
163- .512 276.6
164- CS!M 613 63 90.6 .563
l66- .63 276.0
in6- COla! 656 55 196.0 .166
167- .55 648.6
Iff- COral 517 67 96.0 .557
163 .57 276.6
17@- CR3!D1 141 44 42 43 45 46 47

A-8

. . j . .A:



SACOSSO MODEL iZGEDATA DUPLZCATION AUGUST 13, 1906 RELEASE APR. 1994

SO MODES AND FREWUIES

S01RTED SUL.K DATA ECHO

CAD
COUNT 1.. 2.. S . . 6 7.. .. 9.. 1
171- ZZON ON INY .• 2.9 of s9 1." E. 3-1
172- -to MASS
173- GRID 1 -7.6 .6 .6

* 174- ntXo 2 -4.6 6.6 .6
173- GRID 3 -4.6 -6.6 .0
?17- GRID 4 .0 5. o6
IT7- GRID 6 4.6 6.6 .6

@17- GRID a 4.6 -S.6 .9
17S- GRID 7 7.6 a .6
166 GRID 8 -7.6 .6 2.6
11- GRID S -4.6 S.6 2.6
192- GRID 1 -4.6 -6.6 2.6
181- GRID 11 4.0 6.6 2.6
164- GRID 12 4.6 -5.6 2.6
16- GRID 1a 7.0 .6 2.0
166- GRID 14 -6.6 .6 12.
17- GRID is -4.6 4.6 12.
1n1- GRID 1 -4.6 -4.6 12.
166- GRID 17 4.6 4.6 12.

*, 161 GRID 11 4.6 -4.6 12.
o 11- GRID 19 6.6 .6 12.6
1n2- GRID 26 -6.6 .6 22.0
1t- GRKID 27 -4.0 3.6 22.6
194- GRID 26 -4.0 -3.6 22.6
16- GRID 26 4.6 3.6 22.6
1n1- GRID 36 4.8 -3.6 22.6
1W7- GR D 31 5.8 .6 22.6
190- GRID 32 -4.I 16.* 22.0
199- GRID 32 4.6 16.6 22.6
26- GRID 34 -4.6 -1o.$ 22.6
261- GRID 31 4.6 -16.6 22.6
2m- Go 36 -4. 3.6 24.6
263- GRID 37 -4.6 -3.6 24.6
264- GRID 36 4.6 3.8 24.6

0
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ACOSSS MODEL EIOEMATA OULICATtON AUJQJST 13. IWM RELEASE APR. 1964

6 MODES AD FREQUENCIES

SOR4T E S 9U LK D A TA E C NO
CARD
COLII 1. 2. 3. 4. 5. 6. a. 6. i.s16

205- ont3 S9 4.9 -3.6 24.6
266- 03I 46 .6 .0 2.0
26?- GRI 41 .0 -1.6 1.6
200- 03t 42 .0 6.6 .0
269- 03I 43 -2.6 .6 .6
216- GPM 44 .9 .6 .6
211- 03m 41 2.0 69 .6
212- o3to -4.6 -1.6 .6
213- on3 47 4.6 -6.6 .6
214- GPM 46 -26.0 .6 .6
215- ont 46 -21.60 .6 .9
216- 03m GO -16.6 .6 .6
217- 03t M1 -11.6 .6 .6
219- 03m 52 -6.0 .9 .6
216- 03m 63 6.6 .6 .6
226- 03M 64 11.@ .6 .64221- 03t 5to1.@ .6 .6
222- 03I Of 21.6Of .6 .6
223- 03I 57 26.6 .6 .6
224- M111 1GO 1.24f.11 .3
226- DM37166 46 GO 12 93 5 5?
221- DM171 4"6 9 16 11 12 14 is 16
227- DM171 466 1? is 19 27 26 26 36
226- DM171 466 32 yHRu 35
226- DM171 123416 1 flRU 9
236- 0M171 12S466 13 26 31 49 51 54 so
231- OWTI 122456 36 THOU 41
232- PAR46 0DPN? 0
233- P* 266 66G G. 26K-43. .6 6 3.6666-66. INlE-6
234- PW* 100 66 3.133F-41.6666-61. .5 6 3. 11E-4
236- P34 466 1"6 3.6196-43.6466-03.0416.46OW660
236- pea6 56 1s* 9.467E-41.874E-51.6?4E-63.7466-S
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Prema~ved product of seonsor/actuator mapping matrices and modal matrix.

(Each block below is a row in the product matrix. The number of columns
equals the number of sensors/actuators. The number of rows, equals the number
of sodes in the model. Here fifty-four modes are given.)

* N.B. THE FIRST SIX BLOCKS (ROWS) ARE FOR THE SIX RIGID BODY NODES.

-.315269E-02 .517895E-02 -.138475E-02 -.848!555E-03 -.111276E-02
.6839882-02 .274804E-03 -.627424E-02 -.142413E-01 .101214E-01
-.466664E-02 -.142412E-01 -.300683E-02 .386%33E-02 .5526602-02
.158803E-02 .426474E-03 -.213272E-02 .272722E-02 -.1476292-02

0 -.554972E-03

.462729E-02 -.355801E-03 -.5162052-02 .243005E-02 .8116952-03
-.433856E-02 -.9143932-02 .1477112-01 -.879919E-02 -.193592E-02
-.7563882-02 -.879917E-02 -.115472E-01 -.131719E-02 -.529975E-02
-.818312E-02 .452030E-04 .2719522-02 -.475004E-02 .320011E-02
-.715295E-02

-.4960622-02 -.201205E-02 -.196797E-02 -.471914E-02 .515882E-02
-.405760E-02 -.401340E-02 -.5930032-02 .524705E-02 -.407961E-02
-.194591E-02 .524705E-02 -.399141E-02 -.200323E-02 -.404874E-02
-.4022282-02 .160550E-02 .991013E-04 -.301276E-02 .946879-04
- .2990682-02

-.4743382-02 .754460E-02 .10171SE-01 -.157211E-03 -.466108E-02
.332965E-02 .5956782-02 .1032872-01 .594416E-03 .201562E-02
.1148612-01 .594440E-03 .727127E-02 .807005E-02 .385515E-02
.543203E-02 -.1057502-03 -.470226E-02 .675062E-02 -.496501E-02
8064212-02 

- 2 . 2 3 6 - 1 - 3 9 0 E 0-.160182E-02 -.3014242-02 -.185961E-2 .236-1 -390E0
.396111E-03 .155050E-02 .444494E-02 -.786007E-03 -.1813982-03
-.128230E-02 -.786160E-03 .2127842-02 -.278332E-02 .626846E-03
.131966E-02 .111043E-01 -.2348452-02 -.7318162-03 -.246390E-02

-. 154559E-03

-.9233632-02 -.6396962-02 -.2816992-02 -.200268E-02 -.1031842-01
-.6679332-02 -.3099362-02 -.6187782-03 -.315849E-02 -.846932E-02
-.102700E-02 -.315849E-02 -.1309382-02 -.5680972-02 -.5963342-02
-.3815362-02 -.2680682-02 -.9776032-02 -.4748162-02 -.101340E-01
- .2958182-02

-.6750742-04 .1523372-02 .151056E-02 -.1963382-02 .639319E-04
- .1524812-02 -.1510582-02 .5888292-02 .8471912-04 - .1526302-02
.150731E-02 .8386722-04 -.1506572-02 .152103E-02 -.152188E-02

-.151452E-02 -.1882952-02 -.1727132-05 -.3520312-06 -.131139E-05
.2582682-06
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-.461975E-02 .935707E-03 .791995E-03 -.784817E-02 .461604E-02
-.935799E-03 -.791320E-03 -.102444E-01 .494835E-02 -.104358E-02
.693351E-03 .494942E-02 - .690607E-03 .916870E-03 - .917982E-03

*-.806480E-03 -.209309E-02 -.180235E-05 .732430E-06 -.646094E-06
.111913E-05

.263244E-03 .514215E-02 .517585E-02 -.239311E-05 .263216E-03

.514210E-02 .517585E-02 .334293E-07 .329al7E-03 .513579E-02

.519414E-02 .330027E-03 .519422E-02 .515426E-02 .515426E-02
*.517296E-02 -.536401E-07 .262004E-03 .515777E-02 .259302E-03

.517541E-02

-.4932351-02 -.783646E-03 .1486361-02 .108730E-05 -.49347QE-02
-.783624E-03 .148747E-02 -.472337E-06 -.3896431-03 -.192450E-02
.262548E-02 -.389543E-03 .262720E-02 -.331138E-03 -.330840E-03

*.103421E-02 -.434250E-07 -.4933671-02 .351962E-03 -.5159181-02
.1488161-02

.279027E-03 .7793791-02 .788086E-02 -.7180501-05 .2788301-03

.7793611-02 .7880901-02 .677495E-07 .449849E-03 .7781691-02

.7928221-02 .450472E-03 .7928531-02 .7827261-02 .7827221-02

.787447E-02 - .189545E-06 .275233E-03 .783367E-02 .268642E-03

.7879701-02

-.155624E-01 -.2624281-02 .451560E-02 .5947451-04 -.155789E-01
-.2606161-02 .454519E-02 -.9061891-05 -.124903E-02 -.623355E-02

8146-02 -.1248101-02 8109-02 -.1211001-02 -.1190061-02
.3123691-02 .5211061-04 -.1557191-01 .9607521-03 -.162719E-01
.454232E-02

.380725E-03 .3450911-02 .354388E-02 -.170481E-01 -.479175E-03

-.3467881-02 -.3515011-02 .152819E-02 -.5993661-03 -.344473E-02
.360952E-02 -.6004391-03 -.3558571-02 .347343E-02 -.348078E-02

- .3518781-02 - .1757641-01 - .493670E-04 .2693041-05 - .522509E-04
140472E-04

-.6067221-04 .8133321-04 .147687E-03 .485137E-03 .606673E-04
-.8144761-04 -.1473681-03 -.201893E-03 -.6238021-04 -.614378E-04
.182670E-03 -.594099E-04 -.1826401-03 .9261311-04 -.9361931-04

-.136635E-03 .569513E-03 -.223572E-06 -.777539E-07 -.215776E-05
- .8957221-06

-.104122E-02 -.5916411-03 .410506E-03 -.290310E-02 .104141E-02
.588150E-03 -.4072761-03 .285652E-02 -.123112E-02 .135586E-02
.1100521-02 -.1241781-02 -.1106561-02 -.4614951-03 .4679481-03
-.3035081-03 -.148712E-02 -.945050E-06 -.4278791-05 -.113570E-04

@4 -.493212E-05

-.3013-02 5278-03 .1455871-02 .126968E-04 -.1309481-02

.522065E-03 .145579E-02 -.1519011-05 .7521841-03 -.486307E-04

.2053881-02 .7541581-03 .205523E-02 .6856191-03 .6851421-03

.1313581-02 -.1293281-06 -.130303E-02 .991604E-03 -.1400791-02

.144910E-02
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-.100571E-01 -.625669E-02 -.1422801-03 -.150481E-01 .100722E-01
.624191E-02 .163093E-03 .954304E-02 -.359604E-02 .111830E-01
.397951E-02 -.368026E-02 -.402034E-02 -.553053E--02 .558021E-02

*.872781E-03 -.180601E-02 -.139329E-05 -.250137E-04 -.716567E-04
.342586E-04

-.403904E-04 -.83649aE-04 -.712110E-04 -.547136E-06 -.391138E-04
-.823301E-04 -.706823E-04 .798046E-06 -.190752E-04 -.922450E-04
-.671748E-04 -.1919001-04 -.672465E-04 -.836282E-04 -.823625E-04

*-.754719E-04 -.3746041-06 -.393685E-04 -.763816E-04 -.402739E-04
- .701908E-04

-.194436E-03 -.10219%1-04 .800289E-04 -.7526181-05 -.186437E-03
-.352121E-05 aia8227E-04 .4428901-05 -.112822E-04 -.512271E-04
.131915E-03 -.111690E-04 .130320E-03 .621622E-05 .125484E-04

*.665097E-04 -.166268E-05 -.190686E-03 .372518E-04 -.197742E-03
.821806E-04

.790560E-08 -.1831911-07 -.222229E-07 -.3873171-08 -.566197E-08

.230921E-07 .262764E-07 .106553E-08 .3670221-08 .227697E-07
-.268811E-07 .344111E-08 .307527E-07 -.192742E-07 .2413281-07
.2726681-07 -.129133E-07 .112725E-08 .219716E-08 .1287281-08
.2074411-08

-.3591371-02 .110446E-01 .129350E-01 .2078081-02 .361521E-02
- .110571E-01 -.129291E-01 -.583540E-03 -.166542E-02 -.107320E-01
.153511E-01 -.154157E-02 -.153706E-01 .1155451-01 -.116099E-01

*-.133859E-01 .689066E-02 .297970E-05 -.560106E-05 -.684433E-04
- .337446E-04

.406412E-03 -.226147E-03 -.393053E-03 -.204132E-04 .405306E-03
* .2270081-03 -.391974E-03 .141276E-05 -.266115E-03 .422868E-04
*-.706913E-03 -.2694811-03 -.706448E-03 -.2154131-03 -.2161071-03

-.435593E-03 -.483766E-06 .3%6178E-03 -.3136691-03 .422012E-03
-.379977E-03

.909885E-03 .716368E-04 -.3557251-03 .689764E-03 -.914633E-03
-.7127881-04 .3542041-03 -.696177E-04 .458267E-04 -.4290311-03
-.6962881-03 .4843721-04 .701136E-03 .2617821-04 -.275099E-04
.325626E-03 -.491253E-03 -.456432E-06 .152662E-05 .101552E-04
.553053E-05

- .118932E-03 .379430E-03 .3919201-03 -.523880E-04 .119389E-03
- .3804801-03 - .3917381-03 .472439E-04 - .448142E-04 - .391549E-03
.507984E-03 - .4203481-04 - .508923E-03 .396334E-03 - .3983011-03
-.449199E-03 .1029541-03 .270960E-07 -.3116481-06 -.1273531-05
-.436344E-06

-.5558781-10 .585491E-10 .2377881-10 .909964E-11 -.5526151-10
.589546E-10 .232612E-10 -.8833011-12 .374241E-10 -.196689E-10
.120012E-09 .391314E-10 .119866E-09 .282835E-10 .2858831-10
.6743011-10 .229694E-12 -.511310E-10 .423983E-10 -.517914E-10
.178712E-10
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-.334063E-04 .349799E-04 .141842E-04 .538165E-05 -.331558E-04
.355563E-04 .140615E-04 -.439932E-06 .224606E-04 -.122694E-04
.716573E-04 .235031E-04 .723634E-04 .170467E-04 .171069E-04
.405964E-04 .120033E-06 -.307033E-04 .254518E-04 -.310967E-04
.107336E-04

.271519E-08 -.289700E-08 -.118124E-08 -.461587E-09 .271067E-08
-.285738E-08 -.112267E-08 .595835E-10 -.183449E-08 .879504E-09
-.594557E-08 -.191492E-08 -.579802E-08 -.137370E-08 -.141055E-08

* -.328203E-08 -.148776E-10 .250274E-08 -.207669E-08 .253572E-08
-.874981E-09

-.151482E-02 -.788804E-02 -.434479E-02 -.400577E-02 .128025E-02
.733758E-02 .419156E-02 .416830E-02 -.552042E-03 -.212511E-01

-.180890E-01 .250737E-03 .179648E-01 .285214E-02 -.276292E-02
* .492848E-02 -.894667E-03 -.119657E-03 -.254803E-03 .390807E-04

.345359E-04

.471273E-04 .185191E-03 -.165577E-04 .806940E-05 .474279E-04

.193540E-03 -.146923E-04 .124759E-05 -.327388E-04 -.273739E-03

.244052E-03 -.238594E-04 .262235E-03 -.189090E-04 -.230104E-04

.814419E-04 -.519109E-06 .562892E-04 .783117E-04 .768187E-04
-.174910E-04

-.603767E-02 -.108939E-01 -.150046E-02 .490010E-04 -.597151E-02
-.111844K-01 -.152992E-02 -.190504E-03 .418424E-02 .207360E-01
-.143947E-01 .363771E-02 -.151189E-01 .260540E-02 .285659E-02

* -.336751E-02 .431568E-04 -.640327E-02 -.558349E-02 -.779453E-02
-.196951E-02

-.251762E-04 -.361694E-04 -.400639E-0S .273338E-06 -.256506E-04
-.375830E-04 -.394272E-0 -.676113E-06 .122041E-04 .602995E-04
-.432253E-04 .104030E-04 -.457333E-04 .588253E-05 .668737E-05

* -.108560E-04 -.240884E-06 -.266366E-04 -.175571E-04 -.299465E-04
-.402984E-05

.254078E-05 -.579625E-05 -.6530882-06 .887257E-06 .298614E-05
-.526842E-05 -.556410E-06 .151495E-06 .436827E-06 .256420E-05
-.123658E-04 .739684E-07 -.117262E-04 -.265411E-05 -.274132E-05
-.651099E-0S .217392E-06 .320805E-05 -.238516E-0S .173710E-05
-.833632E-06

-.5560242-04 -.480965E-04 .122885E-04 -.4343132-04 .586904E-04
.516701E-04 -.152390E-04 -.864821E-0 -.564735E-05 -.121984E-04

-.578764E-05 -.621297E-05 .734617E-05 -.267805E-05 .130638E-05
-.851884E-05 .291648E-04 .260441E-06 -.665818E-06 -.357343E-05
-.403731E-05

-.537168E-03 .520850E-03 .233605E-02 .501840E-03 .343037E-03
-.311124E-02 .196102E-02 .114088E-01 .158505E-02 .206397E-02
-.955181E-03 .511415E-02 -.725271E-03 .987384E-03 .877781E-03
-.151061E-02 .704593E-03 .204818E-04 .843954E-03 -.237563E-03
.244244E-02
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.226417E-03 -.632991E-02 .160226E-01 .693207E-03 -.403311E-03
-.429029E-02 .161342E-01 -.191693E-02 -.299728E-02 .155110E-02
-.522245E-02 -.397380E-02 -.606902E-02 -.281601E-02 -.256504E-02

* -.106591E-01 -.229962E-03 .981327E-03 .852733E-02 -.993008E-06
.187453E-01

-.637010E-04 -.283002E-03 .107939E-02 .142278E-04 .798854E-04
.255410E-03 -.950240E-03 -.436772E-04 .489813E-04 -.219371E-03
-.410383E-03 .423990E-04 .349771E-03 -.219148E-03 .179056E-03

* .733537E-03 .280058E-03 .126739E-04 .334732E-04 -.250635E-04
.464027E-04

-.119527E-02 -.257750E-02 .141724E-01 .111884E-03 .156016E-02
.161757E-02 -.114949E-01 -.249733E-03 .211875E-02 -.362017E-02

-.463685E-02 .174024E-02 .343649E-02 -.296028E-02 .227946E-02
.104078E-01 .398177E-02 .249900E-03 .557278E-03 -.319956E-03
.109491E-02

-.736339E-03 .509146E-02 -.267495E-02 -.113467E-02 .217571E-02
-.111604E-01 .107226E-01 .262806E-02 .130227E-01 -.196305E-02
-.540285E-02 .113787E-01 .221183E-02 .188029E-03 -.939477E-03

C .279214E-02 -.854186E-03 .652236E-03 .506370E-03 .197179E-03~.405806E-02

-.195628E-02 .105146E-01 -.107018E-01 .882051E-03 -.149115E-02
.961143E-02 -.110945E-01 .193793E-03 .199362E-02 -.367990E-02
.101007E-01 .320126E-02 .154420R-01 -.257297E-02 -.963129E-03

* -.193304E-02 -.266018E-03 -.178052E-06 .232023E-02 .287037E-02
-.825016E-02

-.164774E-02 .745523E-02 -.105676E-01 .434937E-02 .170984E-02
-.579112E-02 .101516E-01 .248202E-03 .248690E-02 .220379E-02
.159181E-01 .603854E-03 -.155062E-01 -.120381E-05 .274313E-03

* -.271237E-03 .360392E-02 .452517E-03 .716848E-03 .566144E-03
-.113763E-04

.177836E-02 .128502E-02 .877239E-02 .275248E-03 .192555E-02
-.427954E-02 .562841E-02 .676451E-03 -.324161E-02 -.763846E-02
-.165200E-01 -.448668E-03 -.776167E-02 .107322E-01 .392012E-02
.874318E-02 -.133546E-03 .242571E-02 .345981E-02 .164313E-02
.738573E-02

.240188E-02 -.748250E-02 .756737E-02 .498625E-03 .209599E-02

.291031E-02 .904949E-02 -.548351E-03 -.420382E-03 -.147144E-01
-.897553E-02 -.368983E-02 -.193782E-01 .241906E-02 .920693E-02

t7 .527305E-02 -.135693E-03 .242902E-02 .267954E-02 .930594E-03
I .761995E-02

-.184702E-02 -.154987E-02 -.119169E-01 -.672602E-03 .962223E-03
.430191E-02 .105187E-01 .112567E-03 -.222609E-02 -.124927E-01
.262082E-01 -.198301E-02 -.272186E-01 -.917448E-02 .862136E-02
.655111E-02 -.707292E-03 -.504753E-03 .494954E-03 -.347785E-03

C -.582496E-03
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-.552044E-02 .228056E-01 -.208466E-02 -.401412E-03 -.509181E-02
.186123E-01 -.137768E-02 .678153E-04 .528961E-02 -.143599E-02
-.290120E-01 .280986E-02 -.240259E-01 .235477E-02 .105350E-02

- -.660742E-02 -.955036E-04 -.640794E-02 .958732E-02 -.466349E-02
-.426498E-03

-.192568E-02 .209248E-01 -.807090E-02 -.288086E-02 .252983E-02
-.242720E-01 .909374E-02 .109431E-02 -.824936E-02 -.166072E-02
-.129665E-01 -.638068E-02 .146887E-01 -.262354E-02 .313816E-02

* .784463E-02 -.531398E-03 .341206E-03 -.636178E-03 .952803E-03
.967373E-03

-.103436E-02 -.406277E-02 -.566725E-02 -.650086E-03 -.190237E-02
-.828580E-02 -.124772E-01 -.281084E-03 -.588435E-02 -.455617E-02
.252619E-03 .761620E-02 .149419E-02 .148808E-01 .354281E-01

* -.550145E-02 .180726E-04 -.175386E-02 -.704243E-02 -.484477E-03
-.863932E-02

.154460E-02 .835839E-02 .149743E-01 .130651E-02 .345791E-03
-.264185E-02 -.443142E-02 -.611294E-02 -.426798E-02 -.137994E-02
-.184353E-02 .429431E-02 .102076E-02 -.3389972-01 .127035E-01

C -.281911E-02 -.554804E-04 .856156E-03 .349911E-02 .164146E-03
.504835E-02

.142008E-03 .224142E-02 .472764E-02 .689370E-03 .114589E-03
-.378594E-03 -.323057E-02 .296670E-01 .144188E-02 -.349620E-03
.228201E-02 .492052E-02 -.916499E-03 -.698678E-02 .513412E-02

1 .416381E-03 -.170479E-03 -.901519E-06 .912994E-03 -.140085E-03
.822853E-03

.124063E-02 .174579E-02 .779892E-02 .701055E-03 .253186E-02

.318422E-02 .780943E-02 .168804E-02 -.380284E-02 -.107403E-02

.127346E-01 -.498741E-03 .757852E-02 .995247E-02 -.305264E-03
* - .158982E-01 -.383383E-03 .995313E-03 .384417E-02 -.905353E-03

.648640E-02

.114790E-07 .160498E-06 .982832E-07 -.449983E-08 .632603E-07

- .876380E-07 .203879E-06 .359133E-07 -.121692E-06 -.303988E-07

.162093E-06 -.480372E-07 .233667E-06 .172712E-06 .133042E-07
-.252357E-06 -.104950E-07 .207673E-07 .690105E-07 -.114697E-07
.128938E-06

.605729E-02 .219745E-02 .486531E-02 -.416147E-02 -.842852E-02
-.529524E-02 -.124708E-01 -.499496E-02 .685893E-02 .206975E-02
.830728E-02 -.413295E-02 -.111182E-01 .384558E-02 -.821254E-03
.256678E-01 -.281944E-02 -.802565E-03 -.213810E-02 .154408E-02

U -  -.186268E-02

-.133540E-01 -.118397E-02 .397182E-02 .115957E-01 .168347E-01

-.140901E-03 -.618315E-02 -.477920E-02 .338930E-02 -.469804E-03
-.158237E-03 -.346920E-02 .129432E-02 .160813E-02 .116392E-02
.516107E-02 -.143190E-02 -.290321E-03 -.281857E-03 -.202135E-02
-.209307E-02
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.419823E-02 ,300807E-02 .455697E-02 -.272211E-02 -.306943E-02
-.378098E-03 .280769E-02 -.102818E-01 .869922E-02 -.204967E-02
.531960E-02 -.895417E-02 .537789E-02 .165158E-03 .789054E-02

* -.144181E-01 -.144233E-04 .212682E-03 .179038E-02 -.361545E-03
.333217E-02

.100376E-02 .308717E-02 .784317E-02 .956176E-03 .688409E-03
-.546498E-03 -.222561E-02 .365427E-02 -.376257E-02 .979819E-03
.328094E-02 .541218E-02 -.358549E-02 .769268E-03 -.389560E-02

0 .767619E-02 -.183726E-02 .191140E-03 .146357E-02 -.137414E-03
.295946E-02

C
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Guide to Input Data

Card Range
or of

Cards (E ]) Values Remarks

DEC 3,4 Number of Controllers

NC1,NC2,NC3,NR N/A Numbers of modes aagn'd,
NACT,NSEN,ZETA Number sensors, actuators, zeta

[PHIA] N/A Premapped modal-sensor matrices*

[ [PHIS] N/A Premapped modal-actuator mat.*

[W(I)] N/A Modal frequencies* (asc. order)

ICI(I) N/A Modes assigned to Ctlr 1

IC2(I) N/A Modes assigned to Ctlr 2

IC3(I) N/A Nodes assigned to Ctlr 3

V IR(I) N/A Modes assigned to 4th Group

- Q 0,1 0do not print AB,C,Q matrices

BB(I) N/A Q matrix diagonal elements

SKIP 1,2,3 1TR+EA, 22EA, 3eTR *'

DUMMY 1,2,3 Conditional SKIP***

.INIT(I,J)J N/A Initial conditions state vector*

DTTMAXPDT N/A TR: t, tmax, output counter

EPHIL(J,I)J N/A LOS transposed-

DUMMY 1,2,3 Conditional SKIP***

' See the code for how the data should be formatted.

• TR stands for time response; EA for eigenvalue analysis.

• **Covers all possible cases (see code for implied meanings).

Case no.: (1) (2) (3) (4)

lt pass: EA TR(TR+EA) TR(TR+EA) TR
* 2nd pass: TR(TR EA) TR(TR EA) EA EA
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PROGRAM ACOSS2( INPUT,OUTPUT,TAPE8. TAPE6=OUTPUT,TAPE7)
C
C PFN: CSDLLOWERTIME
C THIS PROGRAM GENERATES A LOWER TRIANGULAR TRANSFORMATION
C THE THREE CONTROLLER SOLUTION WILL INCLUDE RESIDUALS.
C

REAL Al(21,2i)DA2(21,21),A3(21,21),A4C21,21)
REAL Bl(21,21),B2(21,21),B3C21,21),B4(21,21)
REAL C1(21,21),C2C21,21),C3(21,21),C4(21,21)
REAL CTCC1(21,21),CTCC2C21,21),CTCC3(21,21).TCC4(21,21)
REAL SAT(21,21),SAT2(21,21),SAT3(21,21),SAT4C21,21)
REAL AKCC21,21),ACTCZ1,21),BCG(21,21),KCC(21,21)
REAL P(21,21),5(21,21)
REAL QA1(21,21),OA2(21,21),QA3(21,21).QA4(21,21)
REAL ACG1(21,21),ACG2(21,21),ACG3(21,21),ACG4(21,21)

*REAL ABG1(21.21),ABG2(21,21),ABG3(21.21),ABG4(21,21)
REAL GAIN1(21,21),GAIN2(21,21),GAIN3(21,21),GAIN4(21,21)
REAL KT1(21,21),KT2(21,21),KT3(21,21),KT4(21,21)
REAL KOBI(21,21) ,KOB2(21,21),KOB3(21,21),KOB4(21,21)
REAL GANMA1(21,21),GAMMA2(21,21),GAMMA3C21,21)
REAL T2(21,21),T3C21,21),T4(21,21),BBC21)
REAL TRT(21,21),TEN(21,21),CT(21,21).V(21,21)
REAL RK(21,21),RK1(21,21),RK2(21,21),RK3(21,21)
REAL RG2(21,21),RG3(21,21),RG4(21,21)
REAL D(21),W(21),TOLDT,ABTPTMAX

4REAL CVC3,21),XL(3)
REAL ZETA,CLOS(3,21),SING(21),XTR(21,21),STOR(21,21)

*REAL PHIA(21,21),PHIS(21,21),MODE(2,21),INIT(4,21)
REAL PHIL(3,21),RPHIL(3,21)
REAL MAJM(64,64),STM(64,64),WORK(64,64),XHAT(3,64)
REAL XO(64),X1(64),XC(64),PETA(21,64),CPHIL(3,64)
INTEGER N,N2,NC1,NC2,NC3,NC12,NC22 1NC32,NRNR2,NMODE
INTEGER IC1(21),1C2(21),C3(21),I,J,K,L,,IC,LL,MM,PDT
INTEGER DEC,QNACT,NSEN,IR(21),IER,SKIP,NCOL,NCOLl
INTEGER NDANDIN,NDA1,NDIM1,ZZ,E2,E3,E4,Pl,P2,P3,AA
COMPLEX Z(64),Wl(21)
COMMON/NAIN1/NDIM,NDIM1,TEN.X(4096)

* COMMON/MAINA/NDA, NDAl
COMMON/NAINB/NCOL, NCOL1
COMMON/MA 1N2/STOR
COMMON/MAIN3/XTR
COMMON/SAVE/T(100) ,TS( 100)
COMNON/INOUT/KOUT, TAPE
COMMON/NUM/IC1,IC2,IC3,IR,NC1,NC2,NC3,NR

C
C
C INITIALIZATIONS AND COMMENTS ON DIMENSIONING
C
C NDIN IS THE ACTUAL NUMBER OF MODES (ALSO REP'D BY N) FOR THIS VERSION.

NDIM 20
NDril NDIN + 1

C NCOL IS THE MAX NUMBER OF MODES ENVISIONED AS POSSIBLE TO RUN
aC IN ANY CONFIGURATION OF THE 4 CONTROLLERS. FOR THIS VERSION ASSIGN
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C NOT LESS THAN 1 NOR MORE THAN 10 MODES TO ANY OF THE 1ST 3 CTLRS.
C THE A,B,C MATRICES NEED DIN >= 2 m 0 NODES ASGN'D TO THE INDIV CTLR.
C SPECIFYING THIS PARAN ALLOWS DIMENSIONING OF THE INDEXED VAR'S
C TO A STD NUMBER AND AIDS USING THE INSL ROUTINES.

NCOL = 21
NCOL1 NCOL + 1

C NDA IS THE MAX NUMBER OF STATES, - 4 o 0 MODES (ETAS) (m N ETAS +
C N ETA DOTS + N ERR + N ERR DOTS) NDA IS BASED ON NDIM, NOT NCOL,
C BECAUSE IT REPRESENTS 4 * THE ACTUAL NO. OF STATES, AND IS

0 C MEANT TO SET UP SPACE FOR 'MR', THE ACTUAL NO. OF STATES. MM'S
C VALUE DEPENDS ON WHETHER THERE ARE RESIDUALS (IN PLACE OF A 4TH
C CONTROLLER) OR NOT (3 OR 4 ACTIVE CONTROLLERS). IF THE NO.
C OF RESIDUALS = 0, THEN NN = NDA, ELSE MM = 4 * # CTLD NODES +
C 2 o # RES MODES. NOTE: REDUNDANTLY, THIS VERSION CONTAINS
C THE EQUIVALENT TERMS 'MM' AND 'N'.

* C WARNING: UNTIL SOMEONE DEVELOPS A SUBSTITUTE FOR SUBROUTINES 'NEXP,'
C 'MMUL,' AND 'MMUL1,' ETC.
C IT WILL BE NECESSARY TO MAKE NDA AND ITS ASSOCIATED DIMENSIONS IN THE
C MAIN DIMENSION STATEMENTS EXACTLY THE SAME AS MM,
C AND RECOMPILE WHENEVER THE VALUE OF 'MR' CHANGES ACCORDING TO NEW
C CONTROLLER ASSIGNMENTS. MAJM IS INPUT TO MEXP, A KLEINMAN ROUTINE,
C WHICH REQUIRES THE MATRIX TO HAVE EXACT DIMENSIONS, IN CONTRAST TO
C THE INSL ROUTINES WHICH ALLOW THE USER TO TELL THEM HOW A MATRIX IS
C ACTUALLY DIMENSIONED RELATIVE TO THE SPACE IT WAS GIVEN IN THE
C DIMENSION STATEMENT IN THE MAIN.
CTENP.*.. NDA MUST EQUAL MM; THIS VERSION EXPECTS 20 MODES WITH 8 OF
CTEMP**** THEN ASSIGNED TO CTLR # 4 WITH 'DEC' = 3. THEREFORE, M=64.

l NDA 64
NDA1 : NDA + 1
KOUT = 6
TAPE =9

IERa
• C ZZ IS THE FLAG DRIVING THE SUPPRESSED AND UNSUPPRESSED PASSES

ZZ = 0
C AA IS THE FLAG DRIVING THE SINGLE READ-IN OF INITIAL CONDITIONS

AA = 0
C
C

SC PRINT'(////)'
PRINT*,'
PRINT*,'
PRINT*,' .. * 3 OR 4 C 0 N T R 0 L L E R
PRINT',' *.'.. ( 0 B S E R V E R ) ***"
PRINT*,' *'. L 0 W E R - R E S I D U A L .'...

PRINT*,' .*. B L 0 C K
PRINT*,' ... C S D L I I 36*6O

PRINT*.,'
PRINT.,'
PRINT'(//)'
PRINT*,' THIS PROGRAM GENERATES A SOLUTION',

USING A LOWER TRIANGULAR TRANSFORMATIONe PRINT'(////)'
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C
C THIS CODE ALLOWS ASSIGNMENT OF THE MODES TO EITHER
C ANY OF 3 CTLRS PLUS 1 RESID MODE SET OR
C ANY OF 4 CTLRS
C
C
C INITIAL SELECTION FOR THREE OR FOUR CONTROLLERS
C

C RN*'FRATRECNRLE UETR3 R
PRINT*,' FOR A THR CONTROLLER RUN, ENTER 3, OR,

READ(8,.) DEC
C
C DEC DEFAULT SWITCH
C

* IF (DEC.NE.4) DEC = 3
PRINT*,'
PRINT*,' THIS IS A ',DEC,' CONTROLLER RUN

C
C
C PHI MATRICES AND CONTROLLER ENTRIES

C C
C
C

PRINT' (///)'
IF (DEC.EQ.3) THEN
PRINT*,' ENTER NC1,NC2,NC3,NR,NACT,NSEN,ZETA >'

* ELSE
PRINT.,' ENTER NCI,NC2,NC3,NC4,NACT,NSENZETA >'
ENDIF
READ(8,.) NC1,NC2,NC3,NR,NACT,NSEN,ZETA
PRINT. ,NC1 ,NC2,NC3,NRNACT,NSEN,ZETA
PRINT*,'

* C
C NOW N IS CALCULATED TO EQUAL THE NUMBER OF MODES IN THE MODEL (=NDIM)

N = NC1 + NC2 + NC3 + NR

C
PRINT*,' ENTER THE ',NACT,' ELEMENTS FOR EACH PHIA
PRINT.,'
DO 1 I=1,N
PRINT.,'ENTER PHIA ',I,' >'
READ(8,.) (PHIA(I,J),J:1.NACT)
PRINT.,' ',(PHIA(I,J),J=1,NACT)

1 CONTINUE
PRINT' (//)'
PRINT.,' ENTER THE ',NSEN,' ELEMENTS FOR EACH PHIS
PRINT*,'
DO 2 I=1,N
PRINT.,'ENTER PHIS ',I,' >'
READ(8,.) (PHIS(I,J),J=1,NSEN)
PRINT.,' ',(PHIS(I,J),Jxl,NSEN)

2 CONTINUE
PRINT'(//)'
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C

*C OMEGAS
C
C

PRINT*, I ENTER THE VALUE FOR EACH OMEGA
PRINT*,'I
DO 4 1=1,N

* PRINT.,'ENTER OMEGA ',I,' >'
READ(8,*) W(I)
PRINT*,' ',W(I)
D(I) = -2. * ZETA * W(I)

4 CONTINUE
PRINT' (/)'

C
C NODE ASSIGNMENT TO CONTROLLERS
C
C

PRINT' (///)'
PRINT*,' THE FOLLOWING NODES ARE ENTERED ACCORDING TO THE'
PRINT*,' ORDER IN WHICH THEY ARE ENTERED IN THE DATA FILE
PRINT*,' AND NOT ACCORDING TO THEIR ACTUAL NODE NUMBER.
PRINT'(C//)'
PRINT*,' ENTER THE ',NC1,' CONTROLLER 1 MODES >'

* READC8,*) (IC1(),I-1,NCl)
PRINT*,' ',(IC1(I),Iw1,NC1)
PRINT,'
PRINT*,' ENTER THE ',NC2,' CONTROLLER 2 MODES >'
READ(8,%) (IC2(I),I=1,NC2)

po PRINT*,' ',CIC2(I),Iul,NC2)
PRINT*,'
PRINT.,' ENTER THE ',NC3,' CONTROLLER 3 MODES >'
READ(8,*) (IC3(I),Ix1,NC3)

*PRINT*,' ',(IC3(I),I=1.NC3)
PRINT.,'
IF (DEC.EQ.3) THEN
PRINT*,' ENTER THE ',NR,' RESIDUAL MODES >'
ELSE
PRINT.,' ENTER THE ',NR,' CONTROLLER 4 NODES >'

C ENDIF
READ(S,.) (IR(I),Izl,NR)
PRINT.,' ',(IR(I),I=1,NR)
PRINT*,'

C
C

E'NC12 =2 *NC1
NC22 =2 *NC2
MC32 = 2 * NC3
K2 2 *N
NR2 .2 *NR

4C M IS THE ACTUAL NUMBER OF STATES (VALUE DEPENDS ON HAVING RESID MODES)
IF (DEC.EQ.3) THEN
M a 2 o NC12 + 2 * NC22 + 2 *NC32 +NR2
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CALL PRNT(ClNSEN,NC12)
PRINT*,' THE CONTROLLER I WEIGHTING MATRIX IS

*CALL PRNT(QA1,NC12,NC12)
PRINT*,' THE CONTROLLER 2 A MATRIX IS "
CALL PRNT(A2,NC22.NC22)
PRINT*,' THE CONTROLLER 2 B MATRIX IS '
CALL PRNT(B2,NC22,NACT)
PRINT*,' THE CONTROLLER 2 C MATRIX IS
CALL PRNT(C2,NSEN,NC22)
PRINT*,' THE CONTROLLER 2 WEIGHTING MATRIX IS
CALL PRNT(QA2,NC22,NC22)
PRINT*,' THE CONTROLLER 3 A MATRIX IS
CALL PRNT(A3,NC32,NC32)
PRINT*,' THE CONTROLLER 3 B MATRIX IS
CALL PRNT(B3,NC32,NACT)
PRINT*,' THE CONTROLLER 3 C MATRIX IS
CALL PRNT(C3,NSEN,NC32)
PRINT*,' THE CONTROLLER 3 WEIGHTING MATRIX IS
CALL PRNT(QA3,NC32,NC32)

C
IF (NR.EQ.O) THEN
PRINT*,' NO RESIDUAL TERMS
GOTO 115
ENDIF

C
IF (DEC.EQ.3) THEN
PRINT*,' THE A RESIDUAL MATRIX IS

* CALL PRNT(A4,NR2,NR2)
PRINT*,' THE B RESIDUAL MATRIX IS
CALL PRNT(B4,NR2,NACT)
PRINT*,' THE C RESIDUAL MATRIX IS
CALL PRNT(C4,NSEN,NR2)
ELSE

* PRINT.,' THE CONTROLLER 4 A MATRIX IS '
CALL PRNT(A4.NR2,NR2)
PRINT*,' THE CONTROLLER 4 B MATRIX IS "
CALL PRNT(B4,NR2,NACT)
PRINT.,' THE CONTROLLER 4 C MATRIX IS "
CALL PRNT(C4,NSEN,NR2)

| PRINT.,' THE CONTROLLER 4 WEIGHTING MATRIX IS
CALL PRNT(QA4,NR2,NR2)
ENDIF

C
ENDIF

C
115 CONTINUE

C
C
C THIS SECTION GENERATES THE RICCATI SOLUTIONS
C AND THE GAIN MATRICES OF EACH CONTROLLER
C

e C
~CALL VNULFP(B1,BI,NCI2,NACT,NC12,NCOL,NCOL,SAT,NCOL,IER)
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IF (2Z.EQ.O) THEN
CALL VNULFN(Cl,Cl,NSEN,NC12,NC12,NCOL,NCOL,CTCC1,NCOL,IER)

* ENDIF
120 CONTINUE

* IER zO
TOL - 0.001
PRINT'(//)'
CALL NRIC(NC12,AlSAT,QA1,S,ABG1,TOL,IER)

* IF (ZZ.EQ.O) THEN
PRINT*,' THE RICCATI SOLUTION OF AC + BCG #1 IS
PRINT*,' IER z ',IER
CALL PRNT(S,NC12,NC12)
ENDIF
CALL VNULFN(B1,S,NC12,NACT,NC12,NCOL,NCOLGAIN1,NCOL,IER)
PRINT*,' THE G2. GAIN MATRIX IS
CALL PRNT(GAIN1,NACT,NC12)
IER =:0
TOL = 0.001
CALL TFR(ACT,A1,NC12,NC12,1,2)
PRINT'(//)'
CALL NRIC(NC12,ACT,CTCC1,QAl,P,ACG1,TOL,IER)
IF (ZZ.EQ.O) THEN

.4 PRINT*,' THE RICCATI SOLUTION OF AC - KCC 01 IS
CALL PRNT(PD NC12,NC12)
ENDIF
CALL NMUL(Cl,P,NSEN,NC12,NC12,KT1)
IF (ZZ.EQ.1) THEN
CALL VNULFP(RK1,GANNA1,P1,Pl,NSEN,NCOL,NCOL,STOR,NCOL,IER)
CALL KRUL(STOR,KT1,Pl,NSEN,NC12,KCC)
CALL MMUL(GANNA1.KCC,NSEN,P1,NC12,KT1)

* PRINT*,' THE 1(1. GAIN MATRIX IS
ELSE
PRINT*,' THE K1 GAIN MATRIX IS

* ENDIF
CALL TFR(1CB1,KT1,NSEN,NC12,1,2)
CALL PRNT(KO81,NC12,NSEN)

125 CONTINUE
IF (ZZ.EQ.0) THEN
CALL VMULFP(82,B2,NC22,NACT, NC22,NCOL, NCOL,SAT2, NCOL, IER)

C' ENDIF
IF CZZ.EQ.O) THEN
CALL VNULFN(C2,C2, NSEN, NC22, NC22. NCOL, NCOL, CTCC2, NCOL, IER)
ENDIF

140 CONTINUE
IER=O0
TOL = 0.001
PRINT' (//)'
CALL NRIC(NC22,A2,SAT2,QA2,S,ABG2,TOL,IER)
IF (ZZ.EQ.0) THEN
PRINT*,, THE RICCATI SOLUTION OF AC + BCG #2 IS
PRINT*,' IER = ',IER
CALL PRNT(S,NC22,NC22)
ENDIF
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CALL VNULFN(82,S,NC22,NACTNC22,NCOL,NCOL,GAIN2,NCOL,IER)
IF (ZZ.EQ.l) THEN

* CALL VNULFN(T2,GAIN2,NACT,E2,NC22.NCOL,NCOL.STOR,NCOL,IER)
CALL MMUL(RG2,STOR,E2.E2.NC22,TEN)
CALL NNUL(T2,TEN,NACT,E2,NC22,GAIN2)
PRINT*,' THE G2* GAIN MATRIX IS
ELSE
PRINT*,' THE G2 GAIN MATRIX IS

to ENDIF
CALL PRNT (GAIN2, NACT, NC22)
IER = 0
TOL c 0.001
CALL TFR(ACT,A2,NC22,NC22.1,2)
PRINT'(C//)'

* CALL NRIC(NC22,ACT,CTCC2,QA2,P,ACG2,TOL,IER)
IF (ZZ.EQ.0) THEN
PRINT.,' THE RICCATI SOLUTION OF AC - KCC 02 IS
CALL PRNT (P. NC22, NC22)
ENDIF
CALL KRUL(C2,P,NSEN,NC22,NC22,KT2)
IF (ZZ.EQ.1) THEN
CALL VMULFP(RK2, GAMMA2,P2, P2, NSEN, NCOL,NCOL,STOR, NCOL, IER)
CALL MNIL(STOR,KT2,P2.NSEN,NC22,KCC)
CALL MMUL(GAMMA2,KCC,NSEN,P2,NC22,KT2)
PRINT.,' THE K2* GAIN MATRIX IS
ELSE

* PRINT.,' THE K2 GAIN MATRIX IS
ENDIF
CALL TFR(KOB2,KT2,NSEN,NC22,1,2)
CALL PRNT(KOB2,NC22,NSEN)

145 CONTINUE
IF (ZZ.EQ.0) THEN
CALL VNULFP(B3,B3,NC32,NACT,NC32,NCOL,NCOL,SAT3,NCOL,IER)
ENDIF
IF (ZZ.EQ.0.OR.DEC.EQ.3) THEN
CALL VMULFN (C3,C3,NSEN,NC32, NC32,NCOL.NCOL,CTCC3,NCOL, IER)
ENDIF

150 CONTINUE
IER=O0

t~. TOL = 0.001
PRINT' (//)'
CALL MRIC(NC32,A3,SAT3,QA3,S,ABG3,TOL,IER)
IF (ZZ.EQ.0) THEN
PRINT*,' THE RICCATI SOLUTION OF AC + BCG #3 IS
PRINT.,' IER = ',IER
CALL PRNT(S,NC32,NC32)
ENDIF
CALL VMILFN(B3,SNC32,NACT,NC32,NCOL,NCOL,GAIN3,NCOL, IER)
IF (ZZ.Eg.1) THEN
CALL VNULFM(T3,GAIN3,NACT,E3,NC32,NCOL,NCOL,STOR,NCOLIER)
CALL MNUL(RG3,STOR,E3,E3,NC32,TEN)
CALL MMUL(T3,TENNACT,E3,NC32,GAIN3)
PRINT*,' THE G3* GAIN MATRIX ISI
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* ELSE
* PRINT*,' THE G3 GAIN MATRIX IS
* ENDIF

CALL PRNT(GAIN3, NACT,NC32)
IER = 0
TOL z 0.001
CALL TFR(ACT,A3,NC32,NC32,1,2)
PRINT' (//)'

* CALL NRIC(NC32,ACT,CTCC3,0A3,P,ACG3,TOL,IER)
IF (ZZ.EQ.0) THEN
PRINT*,' THE RICCATI SOLUTION OF AC - KCC #3 IS
CALL PRNT(P,NC32,NC32)
ENDIF
CALL NMUL(C3,PPNSEN,NC32,NC32,KT3)
IF (ZZ.EQ.1.AND.DEC.EQ.4) THEN
CALL VNULFP(RK3,GAMNA3,P3 ,P3, NSEND NCOLD NCOL, STOR, NCOL, IER)
CALL NMUL(STOR,KT3,P3,NSEN,NC32,KCC)
CALL NNUL(GAMNA3,KCC,NSEN,P3,NC32,KT3)
PRINT*,' THE K3* GAIN MATRIX IS
ELSE
PRINT*,' THE K3 GAIN MATRIX IS

0 ENDIF
CALL TFR(KOB3,KT3,NSEN,NC32,1,2)
CALL PRNT(K033,NC32,NSEN)

155 CONTINUE
IF (DEC.EQ.4) THEN

* IF (ZZ.EQ.O) THEN
CALL VNLLFP(84,B4.NR2,NACT,NR2D1COLNCOL,SAT4,NCOL,IER)
ENDIF
CALL VNULFM(C4,C4,NSENNR2,NR2,NCOL,NCOL,CTCC4,NCOL,IER)

160 CONTINUE
IER = 0
TOL z 0.001
CALL NRIC(NR2,A4,SAT4,QA4,SABG4,TOLPIER)
IF (ZZ.EQ.O) THEN
PRINT*.' THE RICCATI SOLUTION OF AC + BCG #4 IS
PRINT*,' IER = ',IER
CALL PRNT(S,NR2,NR2)
ENDIF
CALL VNULFN(B41,5,NR2,NACT,NR2,NCOL,NCOL,GAIN4,NCOL, IER)
IF (ZZ.EQ.1) THEN
CALL VMULFN(T4,GAIN4,NACT,E4.NR2,NCOL,NCOL,STOR,NCOL,IER)
CALL MMUL(RG4,STORE4,E4,NR2,TEN)
CALL NNUL(T4,TEN,NACT,E4,NR2,GAIN4)
PRINT*,' THE G4* GAIN MATRIX IS
ELSE
PRINT.,' THE G4 GAIN MATRIX IS
ENDIF

* CALL PRNT(GAIN4,NACT,NR2)
IER m0
TOL a 0.001
CALL TFR(ACTA4,NR2,NR2,1,2)
CALL MRIC(NR2IACT,CTCC4DQA4,P,ACG4,TOL.IER)



CALL MMUL(C4,PNSENNR2,NR2,KT4)
CALL TFR(KOB4,KT4,NSEN,NR2,1,2)

• IF (ZZ.EQ.O) THEN
PRINT*,' THE K4 GAIN MATRIX IS
ELSE
PRINT*,' THE K4* GAIN MATRIX IS
ENDIF
CALL PRNT(KOB4,NR2,NSEN)

165 CONTINUE
ENDIF

C
C
C THIS SECTION GENERATES THE BLOCK SEGMENTS
C OF MAJM AND PUTS THEN INTO THE MAJM MATRIX

* C
C THE THREE CONTROLLER MATRIX WILL CONTAIN
C RESIDUAL TERMS (SEE DIAGRAM BELOW).
C THE FOUR CONTROLLER MATRIX DOES NOT IN-
C CLUDE RESIDUALS (YET).
C
C THE THREE CONTROLLER MATRIX (MAJM) WITH
C RESIDUAL TERMS WILL LOOK LIKE:
C
C
C
C * Al+BG1 BIG1 BlG2 B1G2 B1G3 BlG3 0
C.
C 0 AI-KCI KIC2 0 KIC3 0 K1CR
C.
C * B2G1 B2G1 A2+BG2 B2G2 B2G3 B2G3 0
C.
C * K2C1 0 0 A2-KC2 K2C3 0 K2CR
C.
C * B3Gl B3G1 B3G2 B3G2 A3sBG3 B3G3 0
C.
C * K3Cl 0 K3C2 0 0 A3-KC3 K3CR
C.
C * BRG1 BRG1 BRG2 BRG2 BRG3 BRG3 AR
C
C
C
C

K = 2 a MC12
KK = K + NC22
L a 2 * NC22 + K
LL z L + MC32
Pl = 2 * NC32 + L
IF (DEC.EQ.3) THEN
NM 2 2sNC12 + 2*NC22 * 2*NC32 + NR2
ELSE
MM = 2wNC12 * 2wNC22 + 2*NC32 + 2*NR2
P2 x Pl + NR2
ENDIF
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* C
DO 200 Izl,MM

* DO 200 J=1,XX
200 MAJN(I,J) = 0.0

DO 201 I=1,NC12
DO 201 Jz1,14C12

201 KAJR(I,J) a ABG1(I,J)
DO 202 I=1,NC22

* DO 202 Jal,NC22
202 MAJN(I+K,J+K) = ABG2(I,J)

DO 203 I=1,NC32
DO 203 J=1,NC32

203 MAJK(I+L,J+L) z ABG3(I,J)
* CALL TFR(AKC,ACG1,NC12,NC12,1.2)
* DO 204 Iml,NC12

DO 204 J-1,NC12
204 MAJN(I+NC12,J.NC12) =AKC(I,J)

CALL TFR(AKC,ACG2,NC22,NC22,1,2)
DO 205 1=1,NC22
DO 205 J=1,NC22

205 NAJN(I+KK,J.KK) z AKC(IJ)
CALL TFR(AKC,ACG3,NC32,NC32,1.2)
DO 206 I=1,NC32
DO 206 J=1,NC32

206 MAJN(I+LL,J+LL) aAKC(I,J)
CALL NNUL(B1,GAIN1,NC12,NACT,NC12,BCG)
DO 207 IllNC12
DO 207 J=1,NC12

207 MAJN(I,J+NC12) = BCG(I,J)
* CALL NNUL(B1DGAIN2,NC12,NACT,NC22,BCG)

DO 208 I=l1NC12
DO 208 Jzl,NC22
MAJN(I,J+K) =BCG(I,J)

208 NAJN(I,J+KK) =BCG(I,J)
CALL MMUL(Bl,GAIN3,NC12,NACT,NC32,BCG)
DO 209 I=1,NC12
DO 209 Jz1,NC32
MAJN(I,J*L) = BCG(I,J)

209 MAJN(I,J+LL) x BCG(I,J)
G, CALL NNUL(B2DGAIN1,NC22,NACT.NC12,BCG)

DO 210 I=1,NC22
DO 210 J=1,NC12
MAJN(I.KpJ) =BCG(IpJ)

210 NAJM(I+KpJ+NC12) = BCG(I,J)
CALL MNUL(B2,GAIN2,NC22,NACT.NC22,BCG)
DO 211 IzlNC22
DO 211 J=1,NC22

211 NAJN(I*KJ.KK) = BCG(I,J)
CALL KKUL(B2,GAIN3,NC22,NACTNC32,BCG)
DO 212 I=1,NC22
DO 212 JulNC32
MAJM(I+K,J.L) =BCG(IJ)

212 MAJN(IeK,J.LL) a BCG(I,J)
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CALL NHUL(83,GAIN1,NC32,NACT,NC12,BCG)
DO 213 I=1.NC32

* DO 213 J=1,NC12
fAJN(I+L,J) = BCG(I,J)

213 lAJN(I+L,J+NC12) =BCG(I,J)
CALL JIUL(B3,GAIN2,NC32,NACTNC22,BCG)
DO 214 I=1.1C32
DO 214 J=1,NC22
IAJN(I+LJ+K) =BCG(IIJ)

214 NAJN(I+L,J+KK) =BCG(I,J)
CALL NNUL(B3,GAIN3,NC32,NACT,NC32,BCG)
DO 215 ImlNC32
DO 215 J=1.1C32

215 MAJN(I+L,J#LL) = BCG(I,J)
* CALL NUL(KOB1,C2,NC12,NSEN,NC22,KCC)

DO 216 I=1,NC12
DO 216 J=1,NC22

216 NAJM(I.NC12,J.K) = KCC(I,J)
CALL NNUL(KOB1 ,C3,NC121NSENDNC32,KCC)
DO 217 I= 1,NC12

6 217DO 217 Jz 1,NC32
217 AJN(I+NC12,J4L) = KCC(I,J)

CALL NMUL(KOB2,C1 PNC22,NSEN,NC12,KCC)
DO 218 Iz1,NC22
DO 218 J:1,NC12

218 MAJN(I.KK,J) = KCC(IJ)
CALL NNUL(KOB2,C3,NC22,NSEN,NC32,KCC)
DO 219 I=1,NC22
DO 219 J=1.NC32

219 NAJN(I+KK,J+L) = KCC(I,J)
v CALL NNUL(KOB3,C1DNC32,NSEN,NC12,KCC)

DO 220 1=1,NC32
DO 220 J=1,NC12

220 MAJN(I+LL,J) =KCC(I,J)
CALL NNUL(KOB3,C2,NC32,NSEND NC22,KCC)
DO 221 I=1.NC32
DO 221 J1l,NC22

221 MAJH(I.LL,J+K) = KCC(IIPJ)
CALL NNUL(B41,GAIN1,NR2,NACT,NC12,BCG)

C DO 222 I=1,NR2
DO 222 J=1.NC12
HAJM(Ie.Pl,J) = BCG(I.J)

222 NAJM(I+P1,J+NC12) =BCG(I,J)
CALL MMUL(B4,GAIN2,NR2,NACT,NC22,BCG)
DO 223 I=lpNR2
DO 223 J=1,NC22
MAJH(I.Pl,J+K) =BCG(I,J)

223 NAJN(I.P1,J+KK) =BCG(I,J)
CALL MNUL(B4,GAIN3pNR2,NACT.NC32,BCG)
DO 224 I1lNR2
DO 224 J1l,NC32
NAJN(14P1,J.L) z BCG(I.J)

224 MAJH(I+P1.J.LL) x BCG(IJ)
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CALL MMUL(KOB1,C4,NC12,NSEN.NR2,KCC)
DO 225 I=1,NC12

* DO 225 J=1,NR2
225 NAJM(I#NC12,J.Pl) =KCC(I,J)

CALL NNUL(KOB2,C4.NC22,NSEN,NR2,KCC)
DO 226 I=1.NC22
DO 226 Jml,NR2

226 MAJN(I.KK,J.P1) =KCC(I,J)
* CALL NNUL(KOB3,C4,NC32,NSEN,NR2,KCC)

DO 227 I=1,NC32
DO 227 Jzl,NR2

227 NAJN(I4LL,J.Pl) =KCC(I,J)

C.
* IF (DEC.EQ.4) THEN

C
C

DO 230 1z1,NR2
DO 230 J=1,NR2

230 NAJM(I.Pl,J+P1) = ABG4(I,J)
CALL TFR(AKC,ACG4,NR2,NR2,1,2)
DO 231 I=1,NR2
DO 231 Jal,NR2

231 NAJM(I.P2,J+P2) = AKC(I,J)
CALL NNUL(BlGAIN4,NC12,NACT,NR2,BCG)
DO 232 I=1,NC12
DO 232 JmlNR2
MAJN(I,J.Pl) =BCG(I,J)

232 MAJMq(I,J+P2) a BCG(IJ)
CALL NNUL(B2,GAIN4,NC22,NACT,NR2,BCG)
DO 233 Im1,NC22
DO 233 J1lNR2
NAJM(I+K,J+Pl) z BCG(I,J)

233 NAJM(I.K,J+P2) = BCG(I,J)
CALL MMUL(B3,GAIN4,NC32,NACT,NR2,BCG)
DO 234 Izl,NC32
DO 234 Jml,NR2
MAJM(I+L,J.Pl) = BCG(I,J)

234 MAJM(I+L,J+P2) =BCG(I.J)
C* CALL MMUL(B4,GAIN4,NR2,NACTNR2,BCG)

DO 238 I=1,NR2
DO 238 J1l,NR2

238 MAJM(I+P1,J+P2) = BCG(I,J)
CALL MMUL(KOB4,ClNR2,NSENNC12,KCC)
DO 242 11,pNR2
DO 242 Jzl,NC12

242 MAJM(I.P2,J) = KCC(I,J)
CALL I UL(KOB4,C2,NR2,NSEN,NC22.KCC)
DO 243 Izl,NR2
DO 243 J=1,NC22

243 MAJM(I+P2pJ+K) 2KCC(I,J)a C CALL MMUL(KOB4,C3,NR2,NSENNC32. KCC)
DO 244 ImlNR2
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DO 244 J=l,NC32
244 MAJM(I+P2,J+L) = KCC(I,J)

* C
ELSE

C
CALL FORMA(A4,D,W,NR,NR2,IR)
DO 250 I=l,NR2
DO 250 J=1,NR2

_* 250 MAJM(I+Pl,J+P1) = A4(IJ)
ENDIF

C
C
C CONSTRUCTION OF THE MAJOR MATRIX 'MAJM' IS NOW COMPLETE
C

* C
IF (DEC.EQ.4) THEN
PRINT*,' THE FOUR CONTROLLER MAJM IS
ELSE
PRINT*,' THE THREE CONTROLLER MAJM W/RESIDUALS IS
ENDIF
CALL PRNTXL(MAJM,MM,MM)

C
C
C NEXT, THE TIME RESPONSE SECTION FOLLOWED BY THE E'VALUE ANALYSIS SECTION
C THE USER HAS THE OPTION OF GETTING BOTH TIME RESP AND E'VALUE ANALYSIS
C OR 'SKIP'PING EITHER OF THEN. IF TIME RESP IS SKIPPED, NO IC'S NEEDED.
C
C

IF (ZZ.EQ.1) THEN
PRINT*,' THE SUPPRESSED ANALYSIS IS CALCULATED
PRINT'(//)'
ENDIF
PRINT*,' FOR THE TIME RESPONSE AND THE EIGENVALUE'

,' ANALYSIS ENTER 1 .

PRINT*,' FOR ONLY THE EIGENVALUE ANALYSIS ENTER 2 >
PRINT*,' FOR ONLY THE TIME RESPONSE ENTER 3 >
READ(8,.) SKIP
IF (SKIP.EQ.1) THEN
PRINT*,' YOU ASKED FOR BOTH TIME RESP AND EIGENVALUE ANAL'
PRINT ,' •
PRINT*,' THE TIME RESPONSE IS FIRST...
ENDIF
IF (SKIP.EQ.2) THEN
PRINT*,' "
PRINT.,' YOU CHOSE "2" SO WE WILL FORGET THE TIME RESPONSE

ro GOTO 300

ENDIF
IF(SKIP.EQ.3) THEN
PRINT.,' YOU ASKED FOR THE TIME RESPONSE ONLY'
PRINT.,'
ENDIF

C INITIAL CONDITIONS
C THESE ARE READ IN ONLY ONCE FOR EACH JOB (WHEN AA2O.)
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C REGARDLESS OF THE NUMBER OF CONSECUTIVE RUNS
C
C REMEMBER -- EVEN THOUGH RESIDUAL NODES DO NOT HAVE E AND
C E DOT TERMS. THIS READ STATEMENT WILL BE LOOKING FOR THEM,
C SO INPUT E AND E DOT TERMS FOR THE RESIDUALS ALSO.
C DON'T WORRY -- SUBROUTINE FORKXO WILL FILTER THEM OUT LATER.
C
C

IF(AA.EQ.O) THEN
C READ IN A DUMMY DATA CARD. ALLOWS STRUCTURING OF IMP DATA FILE THE
C SAME WAY FOR ALL 4 CASES OF DESIRED OUTPUT: TIME RESP/EIG ANAL VS
C ONE OR THE OTHER ACCORDING TO SUPPRESSED OR UNSUPPRESSED PASS.
C
C CASE 1 CASE 2 CASE 3 CASE 4

* C
C EA TR(TR EA) TR(TR+EA) EA ZZ = 0
C TR(TR EA) TR(TR+EA) EA EA ZZ = I
C
C IMPLIED MEANING OF THE DATA CARDS IN THAT AREA OF THE INPUT DATA
C
C PASS WITH ZZ = 0
C
C PASS WITH ZZ = 1
C
C SKIP SKIP SKIP SKIP
C----

I C SKIP DUMMY DUMMY SKIP
C
C DATA BLKS DATA BLKS DATA BLKS DATA BLKS(EXTRAN)
C
C DUMMY(EXTRAN) SKIP SKIP DUMMY (EXTRANEOUS)
C

* IF(ZZ.EQ.O) READ(8,) DUMMY
PRINT',' ENTER THE INITIAL CONDITIONS FOR ",N," MODES
PRINT*,' ROW1=ETA, ROW2=ETA DOT, ROW3=E, ROW4=E DOT
DO 90 I=1,4

90 READ(8,0) (INIT(I,J),J=1,N)
PRINT'(/I)'
PRINT*,' THE INITIAL CONDITIONS ARE

(2 DO 95 I=1,4
95 PRINT*,(INIT(I,J),J=1,N)

PRINT'(//)'
PRINT,.' THE INITIAL STATE VECTOR. Z (XO) IS
CALL FORMXO(XOINITDEC)
CALL PRNT(XON,I)

4 C READ IN THE TIME PARAMETERS
READ(8,*) DT.TMAX.PDT

C READ IN THE PHI-LOS MATRIX, SIMULTANEOUSLY FORMING IT TO (3XN)
DO 98 Ia,N

98 READ(8,') (PHIL(J,I),J=1,3)
C REFORM THE PHI-LOS MATRIX IAW THE REORDERING OF MODES
C SIMULTANEOUSLY FORMING THE PRODUCT CPHIL = RPHIL*PETA ONCE AND FOR ALL

CALL RFMPHIL(PHILRPHIL,NC1,NC2,NC3,NR,IC1,IC2.IC3,IR,
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*PETA,CPHIL,NN)
AA =1

* ENOIF
PRINT*.' THE TIME INCREMENT IS ',DT,' SECONDS
TOL a 0.001
CALL MEXP(MM,MAJM,DT.STff)
PRINT' (//)'
PRINT*,' THE SOLUTION IS THE STATE TRANS MATRIX, 5TH

* CALL PRNTXL(STM,MM,MN)
C
C
C STM IS NOW THE SOLUTION TO ZDOT a NAJM *Z

~j.C WE NOW PROPAGATE THE STATE IN DT STEPS
C

*C FIRST GENERATE THE [C1:C2:C3] MATRIX
C
C
CS DO 260 I=1,NSEN
CS DO 260 J=1,NC1
CS 260 V(I,J)=Cl(I,J)

4LCS DO 270 I=1,NSEN
*CS DO 270 J=1,NC2

CS 270 V(I,J*NCl)=C2(I,J)
CS DO 280 I=2,NSEN
CS DO 280 J=1,NC3
CS 280 V(I,J+NC1.NC2)=C3(IJ)
CS NODE=NC1+NC2+NC3
Cs IF (NR.GT.0) THEN
CS DO 290 Iz1,NSEN
CS DO 290 Jz1,NR
CS 290 V(I,J+NMODE)zC4(I,J)
CS NMODE=NMODE+NR
CS ENDIF
C
CS PRINT*,' THE C PARTITION MATRIX IS
CS CALL PRNT(V,NSEN,NXODE)
C
C
CS CALL YHAT(CLOS,NSEN,NC1,NC2IPNC3,NR,MM,XHAT,PETA,CV,V)
C

CALL TIMEX(STNDMM,DTPX0,PDT,TNAX.Xl.XCCPHIL,XL)
IF(SKIP.EQ.3) GOTO 410

'aC
C

C END OF TIME RESPONSE SECTION
C
C

4 300 CONTINUE
C
c
C EIGENVALUE ANALYSIS SECTION

e C

C
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PRINT' (//)'
PRINT*,' OVERALL SYSTEM EIGENVALUES

* C.....NOTICE EIGRF INPUT HERE IS MAJN WHICH HAS ACTUAL DIMENSION 'MM'

C**.**SEE COMMENTS ON DIMENSIONING HEAR BEGINNING OF MAIN

CALL EIGRF(MAJX,MM,NDA,O,Z,TEN.NCOLVORK,IER)
PRINT*,' IER a ',IER
DO 400 Ixl,M

400 PRINT*,' ',Z(I)
* PRINT'(//)'

C
PRINT*,' EIGENVALUES OF AC +BCG SYSTEM 1

CALL EIGRF(ABG1,NC12,NCOLO,Wl,TEN,NCOLSTOR,IER)
PRINT*,' IER a ',IER
DO 401 1=1,NC12

*401 PRINT*,' ',W(I)
PRINT' (//)'

PRINT*,' EIGENVALUES OF AC - KCC SYSTEM 1

CALL TFR(AKC,ACGI,NC12,NC1212)
CALL EIGRF(AKC,NC121,NCOLO,W1,TEN,NCOL.STOR,IER)
PRINT*,' IER = ',IER
DO 402 Iz1,NC12

402 PRINT*,' ',W(i)
PRINT' (//)'

C
PRINT*,' KIGENVALUES OF AC + BCG SYSTEM 2

CALL EIGRF(ABG2,NC22,NCOL,O,W1,TEN,NCOLSTOR, IER)
PRINT*,' IER = ',IER
DO 403 I=1,NC22

403 PRINT*,' ',W1(I)
PRINT' (//)'

C
PRINT*,' EIGENVALUES OF AC - KCC SYSTEM 2

CALL TFR(AKC,ACG2,NC22,NC22,1,2)
CALL EIGRF(AKC,NC22,NCOL,O,W1,TEN,NCOLSTOR,IER)
PRINT*,' IER ='.IER
DO 404 Ixl,NC22

404 PRINT*,' -',W1i
PRINT' (//)'

PRINT*,' EIGENVALUES OF AC * BCG SYSTEM 3
CALL EIGRF(ABG3,NC32,NCOL.0,Wl,TENNCOL,STOR,IER)
PRINT*,' IER = ',IER
DO 405 Iz1,NC32

405 PRINT*,' ',W1I)
PRINT'(//)'

C
PRINT*,' EIGENVALUES OF AC - KCC SYSTEM 3

CALL TFR(AKC,ACG3,NC32,NC32,1,2)
J CALL EIGRF(AKC,NC32,NCOL,O,W1,TEN,NCOL.STOR.IER)

PRINT*,' IER = ,IER
rit:7DO 406 Isl,NC32

406 PRINT*.' ',Wi(I)
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C
PRINT'(I/)'

* IF (NR.Eg.0) THEN
PRINT*,' NO RESIDUAL TERM EIGENVALUES
GOTO 410
ENDIF
IF (DEC.EO.4) THEN

C
0 PRINT*,' EIGENVALUES OF AC + BCG SYSTEM 4

CALL EIGRF(ABG4,NR2,NCOL,O,W1,TEN,NCOLSTORIER)
PRINT*,' IER = ',IER
DO 407 I=1,NR2

407 PRINT.,' ",WI(I)
PRINT'(//)'

"* C
PRINT.,' EIGENVALUES OF AC - KCC SYSTEM 4
CALL TFR(AKC,ACG4,NR2,NR2,1,2)
CALL EIGRF(AKCNR2,NCOL,O,WlTEN,NCOL,STOR,IER)
PRINT*,' IER = ',IER
DO 408 I=1,NR2

408 PRINT*,' ",WI(I)
. C

ELSE
C

PRINT*,' EIGENVALUES OF THE A RESIDUAL MATRIX
CALL EIGRF(A4,NR2,NCOL,O,W1,TEN,NCOL,STOR,IER)

* PRINT*,' IER = ',IER
DO 409 I=1,NR2

409 PRINT*,' ",WI(I)
ENDIF
PRINT'(///)'

C END OF EIGENVALUE ANALSIS SECTION
410 CONTINUE

IF (ZZ.EQ.1) GOTO 600
C
C
C THIS SECTION FORMS THE TRANSFORMATION MATRICES.
C TO GET MAJM IN LOWER TRIANGULAR FORM, IT IS
C NECESSARY TO DRIVE THE B1G2, BIG3, B2G3, KIC2,
C K1C3, AND K2C3 TERMS TO ZERO (THREE CTLRS).
C
C WHEN FOUR CONTROLLERS ARE USED, THERE WILL
C BE ADDITIONAL G4 AND K4 TERMS. IT WILL
C THEN BE NECESSARY TO DRIVE THE B(I)G4, AND
C K(I)C4 TERMS TO ZERO ALSO.

r~w C
C
C AFTER THE TRANSFORMATION IS COMPLETE,
C THE THREE CONTROLLER MAJM (WITH RESIDUALS)
C WILL LOOK LIKE:

* C
C *.

C.
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C *Al.bGl BlGl 0 0 0 0 0

*Ca 0 A1-KC1 0 0 0 0 KlCR
C
C * B2G. B2G1 A2+BG2 B2G2 0 0 0
C a
C * K2Cl 0 0 A2-KC2 0 0 K2CR
C.

*C * 83G1 B3Gl B3G2 b.3t2 A3eBG3 B3G3 0
C.
Ca K3Cl 0 K3C2 0 0 A3-KC3 K3CR
Ca

Ca BRG1 BRGl BRG2 BRG2 BRG3 BRG3 AR
C'

C
C
C WHERE THE NON-ZERO TERMS INCLUDE THE

*C TRANSFORMATION MATRICES.
C (THE RESIDUALS ARE NOT ZEROED SINCE THEY

C ARE NOT ADDRESSED IN THIS PROGRAM)
C
C
C
C ON WITH THE TRANSFORMATION MATRICES!
C
C FIRST THE OBSERVER GAIN MATRIX, Ki
C
C

CALL TFR(CT,C2.NSEN.NC22.,2)
DO 500 Iml,NC2

4, DO 500 Jzl,NSEN
500 V(I,J) a CT(I,J)

CALL TFR(CT,C3,NSEN,NC32,1,2)
DO 501 Iml,NC3
DO 501 Jzl,NSEN

501 V(I-NC2.J) = CT(I,J)
IF (DEC.EQ.4) THEN
CALL TFR(CT,C4,NSEN,NR2, 1.2)
DO 502 Izl,NR

a DO 502 J=1,NSEN
502 V(I.NC2+NC3.J) CT(I.J)

NRV zNC2 +NC3 MR
PRINT*,' V (C21C31C4) IS
ELSE
PRINT*,' V (C2/C3) IS
MRV = NC2 +NC3
ENDIF
CALL PRNT(V,NRV,NSEN)
CALL LSVDF(V,NCOLNRVNSEN,TEN,NCOL,-l.SING.STOR.IER)
PRINT,'
PRINT*,' LSVDF 1 IER s '.IER
PRINT' (//)'
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j~. PRINT.' V OUT OF LSVDF IS
CALPRNT(V, NSEN.NSEN)

Pl =1NSEN -NRV
IF (Pl.LT.1) THEN
DO 503 I=1.NSEN

503 GAMMAICI,l) c V(I,NSEN)
P1 . 1
ELSE

* DO 504 I:1,NSEN
DO 504 JzlPl

504 GAMMA1(I,J) z V(I,J+NRV)
ENDIF
PRINT*,' TRANSFORMATION MATRIX GAMMAl
CALL PRNT(GANNA1 ,ISEN,Pl)

* C
C CHECK TO SEE THAT GAMMA 1 IS ORTHOGONAL TO BOTH C2 AND C3
C
C NOTE: AKC IN THIS SECTION IS JUST A WORK AREA TO TEST
C THE ORTHOGONALITY OF CT * TR. IN ALL CASES IT
C SHOULD BE A BLOCK ZERO MATRIX.

6 C CALL TFR(CT,C2,NSEN,NC22.1,2)

CALL MMUL(CT,GAMXA1,NC22,NSEN,P1,AKC)
PRINT*,' C2T w GAMMAl
CALL PRNT(AKC,NC22,Pl)
CALL TFR(CT,C3,NSEN,NC32P1,2)

* CALL MMUL(CT,GANMA1,NC32,NSEN,Pl,AKC)
PRINT*,' C3T * GAMMAl
CALL PRNT(AKC,NC32,Pl)
IF (DEC.EQ.4) THEN
CALL TFR(CT,C4,NSEN,NR2,1,2)
CALL MMUL(CT,GAMMA1,NR2,NSEN,P1,AKC)

* PRINT.,' C4T o GAMMAl
CALL PRNT(AKC,NR2,P1)
ENDIF

C
IF (DEC.EQ.4) THEN
PRINT.,* C234 SINGULAR VALUES

c ELSE
PRINT*,' C23 SINGULAR VALUES
ENDIF
CALL PRNT(SING,NRV,l)
CALL TFR(TRT,GAMMA1,NSEN,P1,1,2)
CALL MMUL(TRT,GAMMAl.P1,NSEN.Pl,RK)
CALL GNINV(Pl,Pl,RK,RK1,J,TAPE)
CALL TFR(CT,Cl,NSEN,NC12.1,2)
CALL MMUL(TRT,C1,Pl,NSEN,NC12,AKC)
CALL NMUL(CTIGANNA1,NC12,NSEN,P1,KOB1)
CALL MMUL(KOB1,RK1,NC12,Pl.P1,STOR)
CALL KNUL(STOR,AKC,NC12,P1,NC12,CTCCl)

C
C THIS CTCC1 WILL BE SUBSTITUTED BACK INTO MRIC
C SYSTEM 1 TO GET A NEW K1.
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40C

C
* ~C NWTEOSRE ANMTIK

C NWTEOSRE ANKTIK
C

CALTRC,3NEC2C2
DOL 50 TFRCl 3E,NC3 21 )
DO 505 J=1,NSE

* ~ ~ D 505 I J uC,J)E
IF5 (DE =C.EQ.4) TE
CAL TF(CTC4,N TENPN212
DOA50 I=1C,N ER212
DO 506 1NSEN

s,. ~ ~ ~ D 506 V(INC ,= T(,J
50 NVNC3J =C(R J

PRINV V (C3C4 ISN
ELNTSE(C/4)I
ELSENC
PRIN., V (C3CI
ERN *'FM)I
CAL RT(,NVNSF
CALL LSVD(V,NCOLNRN EENO,1S .TRIR

PRINT,'
PRINT*,' LSVDF 2 IER a ',IER
PRINT'(//)'

* PRINT*,' V OUT OF LSVDF IS

mo CALL PRNT(V,NSENINSEN)
P2 - SEN -NRV
IF (P2.LT.1) THEN
DO 507 121,NSEN

507 GAIIHA2(I,1) =V(I.NSEN)
P2 = 1
ELSE
DO 508 Isl,NSEN
DO 508 J=1,P2

508 GAKKA2(I,J) =V(I,J#NRV)
ENDIF
PRINT*,' TRANSFORMATION MATRIX GAKKA2

CALL PRNT (GAKKA2, NSEN. P2)

C CHECK TO SEE THAT GANKA2 IS ORTHOGONAL TO C3
C

CALL TFR(CT,C3,NSENPNC32,11 2)
CALL KKUL(CT,GAKKA2, NC32,NSEN, P2.AKC)
PRINT*,' C3T o GAKKA2

3'' CALL PRNT(AKC,NC32,P2)
IF (DEC.EQ.4) THEN
CALL TFR(CT,C4,NSEN,NR2P1,2)
CALL MKUL(CT,GAMNA2,NR2,NSEN,P2,AKC)
PRINT*,' C4T * GANNA2
CALL PRNT(AKC.NR2,P2)

C ENDIF
C
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IF (DEC.EQ.4) THEN
PRINT..' C34 SINGULAR VALUES

* ELSE
PRINT*.' C3 SINGULAR VALUES
ENDIF
CALL PRNT(SING.NRVP1)

C
CALL TFR(TRT.GAMNA2,NSEN,P2,1,2)

*CALL NNUL(TRTpGAMNA2,P2,NSEN,P2,RK)
CALL GXINV(P2,P2,RJC.RK2,J,TAPE)
CALL TFR(CT,C2,NSEN,1C22.1,2)
CALL MMUL(TRTC2,P2,NSEN,NC22.AKC)
CALL MMUL(CT,GANNA2, NC22,NSEN. P2.KOB2)
CALL MNUL(KOB2,RK2,NC22,P2,P2.ST0R)

* CALL NNUL(STORAKC, NC22,P2,NC22,CTCC2)
C
C
C CTCC2 WILL BE SUBSTITUTED BACK INTO
C MRIC-SYSTEM 2 FOR A NEW K2.
C
C
C NOW THE OBSERVER GAIN MATRIX, K3. WHEN
C USING FOUR CONTROLLERS
C
C

IF (DEC.EQ.4) THEN
CALL TFR(CT,C4,NSEN,NR2P1,2)
DO 509 I=1,NR
DO 509 Jal,NSEN

509 V(I.J) =CT(I,J)
PRINT*,' V (C4) IS'
CALL PRNT(V,NR,NSEN)

* CALL LSVDF(VNCOL,NR,NSEN,TEN,NCOL,-1,SING,STOR.IER)
PRINT,'
PRINT*,' LSVDF K(3 IER = '.IER
PRINT'(//)'
PRINT.,' V OUT OF LSVDF IS
CALL PRNT(V,NSEN,NSEN)
P3 = NSEN - MR
IF (P3.LT.1) THEN
DO 510 llNSEN

510 GANNA3(I,l) =V(I.NSEN)
4 P3 =1

ELSE
DO 511 I=1,NSEN
DO 511 Jml,P3

511 GANNA3(I.J) = V(IJ.NR)
ENDIF
PRINT*,' TRANSFORMATION MATRIX GAMMA3
CALL PRNT (GA NNA3, NSEN. P3)

C

C CHECK TO SEE THAr GAMMA3 IS ORTHOGONAL TO C4
C
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CALL MMUL(CTGANMA3,NR2,NSEN,P3,AKC)
PRINT*,' C4T * GANMA3
CALL PRNT(AKC,NR2,P3)

C
PRINT*,' C4 SINGULAR VALUES
CALL PRNT(SINGNR,1)
CALL TFR(TRTGANNA3,NSENP3,1,2)
CALL NNUL(TRT,GANNA3,P3,NSENP3,RK)

* CALL GNINV(P3,P3,RKRK3,JTAPE)
CALL TFR(CT,C3,NSEN,NC32.1,2)
CALL NNUL(TRTC3,P3,NSEN,NC32,AKC)
CALL MNUL(CT,GANNA3,NC32,NSEN,P3,KO83)
CALL MNUL(KOB3,RK3,NC32,P3,P3,STOR)
CALL ENUL(STOR,AKC,NC32,P3,NC32,CTCC3)

* ENDIF
C
C
C CTCC3 WILL BE SUBSTITUTED BACK INTO
C MRIC-SYSTEN 3 FOR A NEW K2 (WHEN
C USING FOUR CONTROLLERS)
C
C
C NOW THE CONTROLLER GAIN MATRIX, G2
C
C

DO 512 I=1,NC1
* DO 512 J=1,NACT

512 V(I,J) = BI(I NC1,J)
PRINT*,' V (Bi) IS I
CALL PRNT(V,NC1,NACT)
CALL LSVDF(V,NCOL,NC1,NACT,TEN,NCOL,-l,SING,STOR,IER)
PRINT*,' I
PRINT*,' LSVDF CONTROL 2 IER 2 ',IER
PRINT'(//)'
PRINT*,' V OUT OF LSVDF IS
CALL PRNT(V,NACT,NACT)
E2 = NACT - NC1
IF (E2.LT.1) THEN
DO 513 I=1,NACT

513 T2(I,l) = V(I,NACT)
E2 = 1
ELSE
DO 514 I=1,NACT
DO 514 J=1,E2

514 T2(I,J) = V(I,J NC1)
ENDIF
PRINT*,' TRANSFORMATION MATRIX T2
CALL PRNT(T2,NACT,E2)

C
C CHECK TO SEE THAT T2 IS ORTHOGONAL TO Bl
C
C NOTE: IN THIS SECTION, BCG IS THE WORK AREA
C FOR B * T. IN ALL CASES THESE SHOULD
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C BE BLOCK ZERO MATRICES.
C

* C
CALL MMUL(B1,T2,NC12,NACT,E2,BCG)
PRINT*,' B2 * T2
CALL PRNT(BCG,NC12,E2)

C
PRINT*,' Bi SINGULAR VALUES

*CALL PRNT(SINGNC1,l)
C

CALL VNULFM(T2,T2,NACT,E2,E2,NACT,NACT,RK,NACT,IER)
CALL GMINV(E2,E2,RK,RG2,J,TAPE)
CALL MMUL(B2,T21NC22,NACT,E2,KOB2)
CALL MMUL(KOB2,RG2.NC22,E2,E2,SAT2)

*CALL VMULFP(SAT2,T2,NC22.E2,NACT,NCOLNACT,KOB2,NCOL, IER)
CALL VNULFP(KOB2,82. NC22,NACT,NC22,NCOL,NCOL,SAT2, NOOL, IER)

C
C
C THIS SAT2 WILL BE SUBSTITUTED BACK INTO MRIC
C SYSTEM 2 FOR A NEW G2.
C
C
C NOW THE CONTROLLER GAIN MATRIX, G3
C
C

DO 515 I=2,NC1
* DO 515 J=1,NACT

515 V(I.J) B 1(I+NC1,J)
DO 516 I=1,NC2
DO 516 J=1,JEACT

516 V(I.NC1,J) = B2(I-NC2,J)
C

*C V IS NOW AN NC1'NC2 BY NACT MATRIX
C

PRINT*,' V (Bl/B2) IS
NRV = NC1 + NC2
CALL PRNT(V,NRV,NACT)
CALL LSVDF(V,NCOL.NRV,NACT,TEN.NCOL,-1.SING,STOR,iLER)

Ito PRINT*,'
PRINT*,' LSVDF CONTROL 3 IER =',IER

PRINT' (//)'
PRINT.,' V OUT OF LSVDF IS
CALL PRNT(V,NACT,NACT)
E3 =NACT - NRV
IF (E3.LT.1) THEN
DO 517 I =1,NACT

517 T3(I,1) =V(I,NACT)
E3 = 1
ELSE
DO 518 Im1,NACT

58DO 518 J=1,E3
58T3(I,J) V(I,J*NRV)

ENDIF
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a PRINT*,' TRANSFORMATION MATRIX T3

* CALL PRNT(T3,NACT,E3)
CHCTOSETAT3IORHOALT iADB

C CHC TOSETA T3IORHGNLT 1ADB
CALCU(1T 9 C2NC,3BG
PRITL, 81 * BlT3,C2NTE3BG
CALRINT'BCGNCT3,E

* ~~CALL NL(B2,T,NC22INAT,3PC
PRIT., 8ML(2,*T3,C2N TE3BG
CALRINT'BCG *C2 E3)

C ALPN(CGN2,3
PRN.'B2SIGLRVLE
CALRINT(BSINGULARV ALUE

C ALPU(IGNVl
CALVUFC3TATEIEATNCXNCIR
CALL GVMF(3,E3,KIRG3J,T3ACTNC,NCIR
CALL GMIUL(B3,T3,C3,NACJTEB)
CALL MMUL(B3,R3NC32,A,E3,SAT3)
CALL VMULF(SA3,3,NC32E3,NAT3NOATKB3NO)IR
CALL VMULFP(KOB3,B3,NC32,,NACT3,NCOL,NCOLSA3,NCOL, IER)
CALCUF(O3BC2NCC2NOCLSTCLIR

C
C ST ILB USIUE AKIT

aC MR3 ICLLTE 3USIU FORK AINETG3
C RCSSE3FOANEG3
C
CNOTHCOTOLRGI AIXG4
C TOW BEFONWHNUGOR CONTROLLERSGI ARX 4
CTOBFONWHNUIGFUCOTOLR
C

IF(E.Q.)TE
I DO 519 I=1NCEN
DO 519 J=1,NCT
DO19 1 VIJ) lB(NC1,
DO9 520,J = BNC ,
DO 520 J=1,NCT
DO20 2 V(INC,N2ICC2J
DO 52+N1,J = B1,NC3,J
DO 521 J=1,NC3

521 52 V(=N1NAJCB(TN3J
C2 (+C+CJ 3IN3J
CVISNWANCNC+3)BNCTATI
C VISNWA NC NC NC)B ATMTI

PRINT*,' V(Bl/B2/B3) IS
(~NRV =NC1 + C2 +NC3

CALL PRNT(V,NRV,NACT)
CALL LSVDF(V,NCOLNRV,NACT,TEN,NCOL,-l,SING,STORIER)
PRINT*,'I
PRINT*,' LSVDF CONTROL IER ='.IER

PRINT' (//)'
IL. PRINT*,' V OUT OF LSVDF IS

CALL PRNT(V,NACT, NACT)
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E4 =NACT - NRV

IF (E4.LT.1) THEN
* DO 522 I=I,NACT

522 T4(I1,) = V(I.NACT)

E4 = 1
ELSE
DO 523 I=INACT
DO 523 J=.,E4

* 523 T4(I,J) = V(I,J+NRV)
ENDIF
PRINT.,' TRANSFORMATION MATRIX T4
CALL PRNT(T4,NACT,E4)

C
C CHECK TO SEE THAT T4 IS ORTHOGONAL TO BI,B2,B3

*C
CALL MMUL(B1,T4,NC12,NACT,E4,BCG)
PRINT*,' Bl * T4 "
CALL PRNT(BCG,NC12,E4)
CALL MMUL(B2,T4,NC22,NACT,E4,BCG)
PRINT*,' B2 * T4

CALL PRNT(BCG,NC22,E4)
CALL MMUL(B3,T4,NC32,NACT,E4,BCG)
PRINT*,' B3 * T4 I
CALL PRNT(BCG,NC32,E4)

C
PRINT.' B123 SINGULAR VALUES
CALL PRNT(SING,NRV,1)

CALL VMULFN(T4,T4,NACT,E4,E4,NACT,NACT,RK,NACT,IER)
CALL GMINV(E4.E4,RKRG4.J,TAPE)
CALL MMUL(B4,T4,NR2,NACT,E4,KOB4)
CALL MMUL(KOB4,RG4,NR2,E4,E4,SAT4)
CALL VMULFP(SAT4,T4,NR2,E4,NACT,NCOL.NACT,KOB4,NCOL,IER)
CALL VMULFP(KOB4,B4,NR2,NACT,NR2,NCOLNCOL,SAT4,NCOL,IER)
ENDIF

C
C
C SAT4 WILL BE SUBSTITUTED BACK INTO MRIC-
C SYSTEM 4 FOR A NEW G4 WHEN USING FOUR

* C CONTROLLERS.
C
C

ZZ= 1
*, GOTO 115

600 CONTINUE

C
C
C THE PROBLEM IS NOW COMPLETE

C
C

PRINT'(///)'
PRINT*,' THIS RUN HAS BEEN COMPLETED
PRINT'(///)'
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END
SUBROUTINE FORNXO(XOINIT,DEC)

* COMMON/NAINA/NDA
CONNON/MAINB/NCOL

C
C
C FORMXO IS THE SANE FOR THREE OR FOUR
C CONTROLLERS SINCE THE RESIDUALS BECOME
C THE FOURTH CONTROLLER.
C

COMNON/NUM/IC1(21) ,IC2(21) ,IC3(21) ,IR(21) ,NC1IPNC2,NC3,NR
REAL XO(NDA),INIT(4,NCOL)
INTEGER M,I,JK,L
DO 1 I=1,NC1

* M = Ic1(I)
XO(I) = INIT(1,M)
XO(I+NCl) = INIT(2,M)
XO(I+NC1.2) = INIT(3,M)

1 XO(I+NC1*3) =INIT(4,M)
J = NC1u4
DO 2 I=1,NC2
N = IC2(I)
XO(I+J) = INIT(1,N)
XO(I.J+NC2) = INIT(2,M)
XO(I.J.NC2*2) =INIT(3,N)

2 XO(I+J+NC2*3) = INIT(4,M)
K =J +NC2*4
DO 3 I=1,NC3
N = IC3(I)
XO(I.K) = INIT(1,M)
XO(I.K+NC3) =INIT(2,M)
XO(I+K+NC3*2) = INIT(3,M)

*3 XO(I.K.NC3*3) = INIT(4,M)
IF (NR.NE.O) THEN
L =K + NC3*4
DO 4 I=1,NR
M IR(I)
XO(I+L) = INIT(1,M)
XO(I+L-NR) = INIT(2,M)
IF (DEC.EQ.4) THEN
XO(I+L+NRo2) = INIT(3,M)
XO(I.L+NR*3) =INIT(4,M)
ENDIF

4 CONTINUE
Si ENDIF

RETURN
4 END

SUBROUTINE FACTOR(N,A,S,MR)
C A=S'S

DIMENSION A(l),S(l)
COMNON/MAINB/ NCOL,NCOL1
COMNON/ INOUT/KOUT
TOL=1.E-6
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MRuO
NN=N*NCOL

DO 1 IzlNN,NCOLl
R=ABS(A(I))

1 IF (R.GT.TOL1) TOLI=R
TOL1=TOL1*1 .E-12
Mal1

* DO 50 1=1,N
Ili= I-1
DO 5 JJ-I,NN,NCOL

5 S(JJ)=0.
ID=II+IN1
R=A(ID)-DOT(IN1,S(II) ,S(II))

* IF (ABS(R).LT.(TOL*A(ID)+TOL1)) GO TO 50
IF (R) 15,50,20

15 MR=-l
WRITE(KOUT, 1000)

1000 FORMAT(37HOTRIED TO FACTOR AN INDEFINITE MATRIX
RETURN

20 S(ID)=SQRT(R)
MR=NR.1
IF (I.EQ.N) RETURN
L=II+NCOL
DO 25 JJ=L,NN,NCOL
IJZJJ+'11

*25 S(IJ)=(A(IJ)-DOT(IMl,S(II),S(JJ)))/S(ID)
50 II=II+NCOL

RETURN
END
SUBROUTINE FORNA(A,D,WPN,N2,IC)
CONMON/NAINB/NCOL
REAL A(NCOL,NCOL)PW(NCOL),D(NCOL)
INTEGER IC(N),I,JDN,M
DO 1 I=1,N2
DO 1 Jml,N2
A(I,J)0O.0

1 CONTINUE
c DO 2 Izl,N

M1= IC(I)

A(I,(I.N)) 1.0

2 CONTINUE
RETURN
END
SUBROUTINE FORMB(BIPHIN,N2,NACT,IC)
COMMON/NA INB/NCOL
REAL B(NCOL,NCOL) ,PHI(NCOL.NCOL)
INTEGER IC(N),NACT,N,M,I,J
DO 1 1-1,N2
DO 1 JzlNACT
B(IJ) 20.0
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CONTINUE
DO 2 Izl,N

* N = IC(I)
DO 2 J1l,NACT
B((N+I),J) = PHI(M,J)

2 CONTINUE
RETURN
END

* SUBROUTINE FORMC(CPHISN,N2,NSEN,IC)
CONNON/NAIIB/NCOL
REAL CCNCOL,NCOL) ,PHIS(NCOL,NCOL)
INTEGER IC(N),NDNSEN,N,N2,I,J
DO 1 I=1,NSEN
DO I J=1,N2

* C(I,J) = 0.0
1 CONTINUE

DO 2 I=1,NSEN
DO 2 J=1,N
M = IC(J)

* C(IJ) =PHIS(M,I)
to. 2 CONTINUE

RETURN
END
SUBROUTINE FORNQ1(QIPA,N.IC)
COMMONINAINSINCOL
REAL A(NCOL),Q(NCOL,NCOL)
INTEGER IJ,K,NPN,N2,IC(NCOL)
H2 =N a2
DO 1 Im1,N2
DO 1 Jzl,N2
Q(I,J) z 0.0

I CONTINUE
DO 2 Iml,N
M = IC(I)
0(1,I) = A(M)
Q(I+N,I-N) = (1,I)

2 CONTINUE
RETURN
END
SUBROUTINE GNINV(NRNCAUNR,NT)
DIMENSION A(1),U(1)
CONNON/MAIN1/ NDIX,NDIM1,S(1)
COMMON/MA INB/NCOL, NCOL1
CONNON/ INOUT/KOUT
TOL:1.E-12
HR=NC
NRN1=MR-1
TOL1:1 .E-20
J331
DO 100 J21,NC
FACzDOT(NRA(JJ) ,A(JJ))
JmN=J-1
JRN=JJNRM1
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JCN:JJ*JN1
DO 20 I=JJ,JCM

*20 U(I)=O.
U (JCN)=1.0
IF (J.EQ.1) GO TO 54
KK= I
DO 30 lKzlJN1
IF (S(K).EQ.1.O) GO TO 30

* TEMPa-DOTCNR,A(JJ),ACKK))
CALL VADD(KITEMP,I1(JJ) DU(KK))

30 KK=KK.NCOL
DO 50 La1D2
KK= 1
DO 50 Ku1,JN1

* IF (S(K.E0.0.) GO TO 50
TEIIP2-DOT(NR,A(JJ) ,A(KIC))
CALL VADD(MR,TENP,A(JJ),A(KK))
CALL VADD(KXTEMPU(JJ),U(KK))

50 KK=IKCKNOL
TOLlmTOL*FAC
FACzDOT C R, A(CJJ),A(CJJ) )

54 IF (FAC.GT.TOLI) GO TO 70
DO 55 I=JJJRM

55 A(1)20.
5(J) 0.

* DO 65 Kxl MN
IF (S(K).EQ.0.) GO TO 65
TENPm-DOT(K,U(KK) ,U(JJ))
CALL VADD(NRTEMP.A(JJ),A(KK))

65 KKzKKeNCOL
FACzDOT(JU(JJ) ,U(JJ))
NR=NR-1
GO TO 75

70 S(J)z1.O
KK: 1
DO 72 Kz1,JN1
IF (S(K).EQ.1.) GO TO 72

C7- TENP=-DOT(NRA(JJ) ,A(KK))
CALL VADD(KPTENPU(JJ)I.U(KK))

72 KK=KK.NCOL
75 FAC=1./SQRT(FAC)

DO 80 I=JJ,JRN
80 A(I)-A(I)*FAC

DO 85 I=JJ,JCM
85 U(I)=U(I).FAC
100 JJ=JJ*NCOL

IF (MR.EQ.NR.OR.NR.EQ.NC) GO TO 120
IF (NT.NE.O) WRITE(KOUT,110)NR,NC,NR

110 FORMAT(I3,lHX,I28SH N RANK,12)
120 NENDzNCwNCOL

DO 135 Jzl,NC
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DO 125 Iz1,NR

* S(I)=O.
DO 125 KK=JJNEND,NCOL

125 S(I)=S(I)4A(II+KK)*U(KK)
IIuj
DO 130 Iml,WR
UCII)=SCI)

130 II-II*NCOL
135 JJ-JJ.NCOLl

RETURN
END
SUBROUTINE INTEG(N,A,CST)

C S= INTEGRAL EA*C*EA FROM 0 TO T
*C C IS DESTROYED

DIMENSION A(1),C(l),5(1)
COMMON/NAIN1/ NDIX,NDIN1, X(1)
CONMON/MAINB/NCOL, NCOL1
COMNON/NAIN2/COEF( 100)
NN=N'NCOL
UN1=N-1
IND=O
ANORN=XNORN(N,A)
DT-T

5 IF (ANORN.ABS(DT).LE.0.5) GO TO 10
DT=DT/2.

* IND=IND.1
GO TO 5

10 DO 15 I=1,NN,NCOL
p 3=1.1111

DO 15 JJ=I,J
15 S(JJ)=DT*C(JJ)

Tl=DT**2/2.
DO 25 IT=3,15
CALL MMUL(A,C,N,N,N,X)
DO 20 Isl,N
II=(I-1)*NCOL
DO 20 JJ=I,NN.NCOL

C(JJ)=(X(JJ).X(Il))*Tl
20 S(JJ)=S(JJ).C(JJ)
25 T1=DT/FLOAT(IT)

IF (IND.EQ.O) GO TO 100
COEF(11)=1.0
DO 30 I=1,10
11=11-I

30 COEF(II)=DTOCOEF(IIbA)/FLOAT(I)
I1=1
DO 40 Iz1,NN,NCOL

DO 35 JJ-I.J
35 X(JJ)=A(JJ)'COEF(l)

X( II) =X( Il) COEF (2)
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40 II=II'+NCOLl
DO 55 L=3.11

* CALL NNUL(A,X,N,N,N,C)

T1=COEF CL)
DO 55 IslNN,NCOL
JI.NM1
DO 50 JJmI,J

050 X(JJ):C(JJ)
X(II)=X(II).Tl

55 II=IINCOLl
C X=EXP(A.DT)

LmO
60 L=L.1

* CALL MMUL(X,S,N,N,N,C)
11=1
DO '30 I=1,N
JZII
IF (I.EQ.1) GO TO 75
DO 70 JJ=I,IINCOL
S(JJ) 5(J)

70 JuJ~l
75 DO 85 JJ=I,N

KK-JJ
DO 80 K-INN,NCOL
S(J) u5(J) .C(K) .X(KK)

80 KK=KK+NCOL
85 JzJ+NCOL

DO 87 JJ-I.NN,NCOL
87 C(JJ)=X(JJ)
90 IIzII+NCOL

IF (L.EQ.IND) GO TO 100
CALL MNUL(CCDN,N,NPX)
GO TO 60

100 CONTINUE
RETURN
END
SUBROUTINE NEXP(N,A,T,EA)
DIMENSION A(1),EA(1),C(84),D(85),E(84)
COMMON/NAIN1/NDIMNDIN1,TEN,X(l)
NN N*.2
NN1 N-1
NP1 =N.1

IF (N.GT.1) GO TO 5
EA(1)=EXP(T*A(1))
RETURN

5 W=1.0
DO 10 lxl,NN1N
ILzI.NM1
DO 10 JzI,IL

10 EA(J)*A(J)
Cl=XNORN1(NA)
IND=O
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Lal

*15 IF (ABS(T1.Cl).LE.3.O) GO TO 20
Tl=Tl/2.
IND=IND,1

GO MO 15
20 C2-0.

DO 25 Isl,NN,NP1
*25 C2=C2-EACI)

C2=C2/FLOAT CL)
CCL) =C2
DCL+1)=0.
II=N+1-L
ECII)=W

DO 35 I=1,NN.N
IL=I+NX1
DO 30 J1I,IL

30 XCJ)=EACJ)
XCII)=XCII)+C2

35 II=II+NP1
IF (L.EQ.N) GO TO 40
CALL MNUL1(X,ANN,N,EA)
W=W*T1 /FLOAT CL)

GO TO 20
40 CONTINUE

C*....* CAN CHECK X 0 FOR ACCURACY (63 IS OVERKILL FOR CONVERGENCE)
J=N+63
DO 50 L=N,J
DO 45 K:1,N
DCK)aCDCK,1)-W*C(K) )*Tl/FLOATCL)

45 E(K)%ECK)+D(K)
50 W=DC1)

DO 60 I=1,NNN
IL=I+NN1
DO 55 J1I,IL

55 EACJ)=EC1)UACJ)
EA(II)=Eh(II)+E(2)

IF (N.EQ.2) GO TO 85
DO 80 L=3,N
CALL NNUL1(EA,A,N,N,N,X)
II~1
C2=E L)
DO 75 11l,NN,N
ILzl+NN1
DO 70 J=I,IL

70 EA(J)zX(J)
EACIl)=EACII)+C2

80 CONTINUE
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85 IF (IND.EO.0) RETURN
DO 200 Lz2.,IND

* DO 90 Iu1.NN,N
ILzI+NK1
DO 90 J=I,IL

90 X(J)ZEACJ)
100 CALL NMUL1(X,X,N.N,N,EA)

RETURN
* END

SUBROUTINE KLINEQ(N,A,C,X,TOL,IER)
C SOLVES A'X.XA+C=O
C A AND X CAN BE IN SAME LOCATION
C ANSWER RETURNED IN C AND X

DIMENSION AC1),C(1),X(l)
* COMNON/MAINB/ XCOL, NCOL.

COMNON/NAIN3/F (1)
ADV=TOL*1 .E-6
DT= .5
DT1 20.
NN=N*NCOL
DO 5 II=1,NN,NCOLl

5 DTlaDT1-A(II)
DT1 DT1 IN
IF (DT1.GT.4.0) DT=DTu4.0/DT1

DO 20 luliN
DO 15 JJ=I,NN,NCOL

15 X(JJ)=DT#A(JJ)
X(II)=X(Il)-.5

20 IIsII.NCOLl
CALL GNINV(N,N,XF,MR,0)
IER=4
IF (MR.NE.N) RETURN
CALL NMUL(C,F,N,N,N,X)

C INITIALIZATION OF X,F
I=1
DO 40 II=1,NN,NCOL
J= II
IF (I.EQ.l) GO TO 30
DO 25 JJ=I.II,NCOL
C(J)=C(JJ)

25 J*J.1
30 IDzJ

DO 35 JJ=II,NN,NCOL
C(J)=DT.DOT(N,F(II) ,X(JJ))

35 JzJ.1
F(ID)=F(ID),1.0

40 1=1.1
DO 90 IT=1,20
NEZ20
CALL NNUL(C,FDNN.NX)
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J=1
GO TO 70

*60 J311
DO 65 JJ=I,II.iCOL
C (J)=C(CJJ)

65 JxJ.1
70 IDzJ

DT1=C(J)
* DO 75 JJ=II,NN,NCOL

C(J)=C(J)+DOT(N,F(II) ,X(JJ))
75 J=J.l

* DO 80 JJ-II,J
80 X(JJ)inF(JJ)

* IF (ADS(CCID)).GT.l.El50) GO TO 95
IF (ABS(C(ID)-DT1).LT.(ADV.TOL*ABS(C(ID)))) NEZ=NEZ.1
1=1+1
II=II .NCOL
IF (I.LE.N) GO TO 60
IF (NEZ.EQ.N) GO TO 150
CALL MNUL(XX,NNDNDF)

90 CONTINUE
95 IERz1

RETURN
150 CONTINUE

NN1=N-1
* DO 155 Izl,NN,NCOL

rraI+NmI
15DO 155 JJ=III
15X(JJ)inC(JJ)

IERmO
RETURN
END
SUBROUTINE MMUL(XIYN1,N2,N3,Z)

3 COMMON /MAINB/ NCOL
DIMENSION X(NCOL,1),Y(NCOL,1).Z(NCOL,1)
DO 3 J=1.N3
DO 2 Iin1,N1

DO 1 K=1,N2
3 1 S=S+X(I,IC)*Y(K,J)
*2 Z(I,J)=S
*3 CONTINUE

END
SUBROUTINE MMUL1(X,Y,N1,N2,N3.Z)
REAL X(l),Y(l),Z(1)
COMMON/NAINA/NDA
NEND3=NDA*N3
NEND2zNDA.N2
DO 1 Iz1,Nl
DO 1 JinI,NEND3,NDA
TN=0.
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KKUJ-I
5 KXzKX.1

* TNTMNX(K)*Y(KK)
Km K.NDA
IF (K.LE.NEND2) GOTO 5

1 Z(J)*TM
* RETURN
* END
* SUBROUTINE IRIC(NIASQX,Z,TOLIER)

DIMENSION A(1),SQi).Q(),X(1),Z(i)
COMNON/NAIN1/NDII, NDIM1, F(1)
COMMON/MAINB/NCOLPNCOL1
COMMON/MAIN2/TR(1)
COMMON/ INOUT/KOUT

* ADV=TOL.1.E-6
NN=N*NCOL

INDal
COUNT=O.
IF (IER.E0.1) COUNT*99.
IF (IER.EQ.1) IIRzN
IF (IER.Eg.1) GO TO 100
Tim-i.

300 CONTINUE
IERmlO
COUNT=COUNT.

* DO 15 11l,N
DO 15 J-INN,NCOL

15 X(J)=-S(J)
CALL INTEG(N,A,X,Z,Tl)

* CALL FACTOR(NZX,NR)
IERzl
IF (NR.LT.0) GO TO 200
IER=0
CALL GMINV(N,NPXIZ.MRDO)
CALL TFR(TR,ZIN,N,1,2)
CALL MNUL(Z,TR,N,N,N,X)
DO 18 IIiniNN,NCOL1

DO 17 JzlIINN,NCOL
X(J)z(X(J).X(I))/2.
X(I)=X(J)

k17 I=1.1
18 CONTINUE

i,..100 CONTINUE
DO 16 11l,X

a16 TR(I)=-1.0
C A+SX IS STABLE
C POSSIBLE UNCONTROLLABILITY IF MR.NE.N
C JIM DILLOW'S REPUTATION PRECEDES HIM

TOL1=TOL/10.
MAXIT=40
DO 40 ITzlMAXIT
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IF (IER.EQ.1) GO TO 101
CALL MMUL(SX,N,NDN.F)

* CALL NNUL(XI,FN,N.N,Z)
* DO 20 I=1.NNNCOL

DO 20 J-I,II
X(J)%A(J)-F(J)

20 ZCJ)=Z(J)+Q(J)
*101 CONTINUE

IERzO
CALL KLIIEQ(N.Z,X,T0L1.IER)
IF (IER.NE.0) GO TO 200
L=O

DO 25 I=19N
IF (ABS(X(II)-TR(I)).LT.(ADV.TOLuX(II))) L=L.1
TR (I)z=XCII)
II=II+NCOLl

25 C1=C1.TR(I)
+ IF (ABS(Cl).GT.l.E20) GO TO 50

IF (L.NE.N) GO TO 40
CALL GNINV(N,N,.F,NR,O)
CALL MNUL(S.X.N.,NNZ)
DO 30 Iz1,NN,NCOL
II=I+Nm1
DO 30 J=I,II

30 Z(J)=A(J)-Z(J)
-* IF (MR.NE.N) WRITE(KOUT.35)HR

35 FORMAT(27HORICCATI SOLN IS PSD--RANK 913)
GO TO 65

40 CONTINUE
WRITE(KOUT,45) NAXIT

45 FORMAT(27HORICCATI NON-CONVERGENT IN *12,11H ITERATIONS)
GO TO 60

50 WRITE(KOUT,55)IT,Tl
55 FORMAT(3OHORICCATI BLOW-UP AT ITERATION ,12,12H INITIAL T= JF1O.5)

60 IER=1
65 RETURN
200 IF (IND.Eg.2) GO TO 250

IF (COUNT.GE.10.) RETURN
Tl=Tl/(2. ..COUNT)
IND.2
GO TO 300

250 T1=Tl*(2.**COUNT)
IND:1
GO TO 300
END
SUBROUTINE PRNT (NAT,N, )
CONNON/HAINB/NCOL
REAL MAT(NCOL,NCOL)
INTEGER N.I.J,K,N
PRINT*,'
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IF (N.GT.12) GOTO 2
DO 1 I1,N

* PRINT'(1X,12Fl0.4)',(MAT(I,J),J=1,M)
1 CONTINUE

GOTO 10
2 CONTINUE

IF (N.GT.24) THEN
CALL PRNTXL(NAT,NM)
RETURN
ENDIF
DO 3 11l,N
PRINT' (lX,12F10.4)' , (AT(I,J) ,J=1,12)

3 CONTINUE
PRINT' (//)'

*0 DO 4 I=1,N
PRINT' (lX,12FI0.4)' ,(MAT(I.J) ,J=13,14)

4 CONTINUE
10 PRINT'(//I)'

RETURN
END
SUBROUTINE PRNTXL(MATN,M)
COKNON/MAINB/NCOL
COMMON/MAINA/NDA
REAL NAT(NDA,NDA)
INTEGER IDJ,K,L,N,N
PRINT*,' I

w DO 1 LzlM,12
K z L + 11
IF (M-L.LT.11) K = N
DO 2 I=1,N
PRINT' (lX 12Fl0.5)' ,(NAT(IJ) ,J=L,K)

2 CONTINUE
PRINT' (//)'

1 CONTINUE
PRINT' (///)'
RETURN
END
SUBROUTINE PRNTSN (NAT,N ,M)
COMMON/MAINB/NCOL
REAL HAT(3,NCOL)
INTEGER IJPK,LIPN,N
PRINT*,'
DO 1 LmlM,12
K = L + 11.
IF (M-L.LT.11) K =M
DO 2 IalN
PRINT' (lX.12Fl0.5)' ,(MAT(I.J) ,J=L.K)

2 CONTINUE
PRINT' (II)

1 CONTINUE
PRINT' (///)'

* RETURN
END
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SUBROUTINE TFR(X,A,NMKI)
C

*C 1- I GIVES X =A
C 2 GIVES X =A'
C 3 GIVES X =A AS AVECTOR
C 4 GIVES A = X WHERE X WAS A VECTOR
C

DIMENSION X(l)DA(l)
* CONNON/MAIMB/NCOL

JS=(K-1)*NCOL.N
JEND=NUNCOL
GO TO (10,30,50,70).1

10 DO 20 II=lN
DO 20 JJ=II,JEND.ICOL

*20 X(JJ)ZA(JJ+JS)
RETURN

30 DO 40 II=1.N
KK=(Il-l)*NCOL

* DO 40 JJ=1,14
LL=(JJ-1)*NCOL+Il

40 X(KK+JJ)=A(LL+JS)
* RETURN

50 KK=0
DO 60 II=1.JEND,NCOL
LL=II. N-l
DO 60 JJ=II,LL

* KK=KK.1
60 X(KK)=A(JJ.JS)

RETURN
70 KK=M*N.1

DO 80 II=1.11
LL=(M-Il)*NCOL.1
DO 80 IJ=1,N
KK=KK-l
JJ=LL..N-IJ

80 A(JJ+JS)=X(KK)
RETURN
END
FUNCTION DOT(NR,A,B)
DIMENSION A(l),B(l)

* DOT=O.
DO 1 1=1,NR
DOT=DOT.A(I)*B(I)
RETURN
END
SUBROUTINE VADD(N,C1,A,B)
DIMENSION A(1)..B(l)
DO 1 Isl,N

1 A(I)zA(I)+Cl*B(I)
RETURN
END

e FUNCTION XNORM1(N.A)

* C COMPUTES AN APPROXIMATION TO NORM OF A- - NOT A BOUND
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DIMENSION A(N.N)

* NP1 = N2
CI:=O.
TR=A(l)
IF (N.EQ.1) GO TO 20
I=2
DO 2.0 II=NP1,NN,N

* JXII
DO 5 JJ=IIIpN
Cl=C14.ABS(A(J)*A(JJ))

5 J=J+l
TR=TR+A(J)

10 1=I+1
* TR=TR/FLOAT(N)

DO 15 II=1,NN,NP1
15 Cl=Cl+(A(II)-TR)**2
20 XNORN1:ABS(TR) +SQRT(CI)

RETURN
'V END

FUNCTION XNORM(N.A)
CCOMPUTES AN APPROXIMATION TO NORM OF A -- NOT A BOUND

DIMENSION A(l)
COMMON/MAINB/NCOL, NCOL1
NNNNCOL

w TR=A(l)
IF (N.EQ.l) GO TO 20
1=2
DO 10 II=NCOL1,NNNCOL
JZII
DO 5 JJ=I.II,NCOL

40 Cl:C1+ABS(A(J) .A(JJ))

* TR=TR+A(J)
10 1:1.1

TR=TR/FLOAT(N)
DO 15 II=1.NN,NCOLl

20 XNORM=ABS(TR) .SQRT(Cl)
RETURN
END
SUBROUTINE RFMPHIL(PHIL.RPHIL,NC1,NC2,NC3,NR,ICl.IC2.-C3,IR,

v .PETA,CPHIL,MM)
COMMON/MAINA/NDA
COMMON/MAINB/NCOL
REAL PHIL(3,NCOL).RPHIL(3,NCOL,CPHIL(3,NDA),PETA(NCOL.NDA)
INTEGER I.,K,KK,L,.NM,NC1,NC2.NC3,NR.NNODE
INTEGER ICI(NCOL) 31C2(NCOL),1C3(NCOL) .IR(NCOL)
NMODE=NC1 sNC2+NC3+NR

C
C FIRST REFORM PHILOS IAW MODE NUMBER REORDERING
C

B -42



L=O
DO 1 I=1.NC1

*M = 1CI(I)
DO 1 J=1,3
RPHIL(J,I4L) PHIL(J,M)

1 CONTINUE
L =L +NC1
DO 2 1=1,NC2

*M = IC2(I)
DO 2 J=1,3
RPHIL(J,I+L) PHIL(J,M)

2 CONTINUE
L =L + NC2
DO 3 I-1.NC3

*M = IC3(I)
DO 3 J=1,3
RPHIL(J,I+L) =PHIL(J,M)

3 CONTINUE
IF (NR.GT.0) THEN
L L + NC3
DO 4 I=1,NR
M IR(I)
DO 4 J=1.3
RPHIL(J,I.L) =PHIL(J,M)

4 CONTINUE
ENDIF

C
C NOW FORM P(ETA) TO PICK THE ETAS OUT OF THE STATE VECTOR
C

DO 60 I=1,NNODE
P4 DO 60 J=1MM

60 PETA(I,J)=O.0
* DO 61 I=1.NC1

DO 61 J=1,NC1
IF (I.EQ.J) THEN
PETA(I,J)=1.O
ENDIF

61 CONTINUEK K=NC1
KK=4.NC1
DO 62 I=1,NC2
DO 62 J=1.NC2
IF (I.EG.J) THEN
PETA(l4K.J'KKV=1.0
ENDIF

62 CONTINUE
K=K +NC2
KK=KK+4*NC2
DO 63 Im1.NC3
DO 63 J=1,NC3
IF (I.EQ.J) THEN

* ~ PETA(I+K,J+KK)=1.O
ENDIF

B-43

4..: I



63 CONTINUE

IF (NR.EQ.O) GOTO 65
o K=K NC3

KK=KK 4*NC3
DO 64 I=1,NR
DO 64 J=1,NR
IF (I.EQ.J) THEN
PETA(I+K,J KK)=1.0

*9 ENDIF
64 CONTINUE
65 CONTINUE
C PRINT*,' THE MATRIX P(ETA) IS
C PRINT*,' ***TRANSPOSED****
C PRINT'(I/)'

* C DO 66 J=1,MM
C 66 PRINT'(1X,2OF4.O)',(PETA(I,J), I=1,20)
C
C NOW GET CPHIL = RPHIL*PETA
C

CALL VMULFF(RPHILPETA,3,NMODEMM.3,NCOL,CPHIL,3,IER)
RETURN
END
SUBROUTINE TIMEX(STM,MM,DT,XOPDT,TMAX,X1,XC,CPHILXL)
COMMON/MAINA/NDA
REAL DTTNAX,ABT,STM(NDA,NDA),XO(NDA),Xl(NDA),XC(NDA)
REAL CPHIL(3,NDA),XL(3)

* INTEGER I,J.MM,PDT
C
C THIS ROUTINE PROPAGATES THE STATE VECTOR IN TIME AND OUTPUTS LOS DATA
C TO BOTH THE MAIN PRINTED OUTPUT FILE AND TO A PLOT FILE. IT GIVES
C LOS RADIUS AND DEFOCUS VS TIME TO THE PLOT FILE, BUT X,Y,Z,R AND T
C TO THE PRINT FILE.

C ABTvO.

C MAKE A COPY OF THE I.C. VECTOR AND USE THE COPY.
DO 10 I=1,MM
XC(I) = XO(I)

10 CONTINUE
C GET THE LINE-OF-SIGHT DATA OUTPUT BY
C WRITING IT TO THE PRINTED OUTPUT,
C AND TO TAPE7.

WRITE(6,'(//)')
WRITE(6,*)' TIME LOSX LOSY DEFOCUS RADIUS'
WRITE(6,'(/)')

C CHECK THAT MAX TIME, 'TMAX'. IS NOT REACHED AND CONTINUE TO
C PROPAGATE THE STATE VECTOR AND GET LOS EVERY 'PDT' TIME INCREMENTS
C FIRST OUTPUT THE INITIAL CONDITION

CALL VMULFF(CPHILXC,3,MM,1,3,NDA,XL,3,IER)

RAD = ((XL(1)*.2) # (XL(2)*.2))*'0.5
' WRITE(6,1000)ABT,XL(1),XL(2),XL(3),RAD

WRITE(7,1001)ABT,RAD,XL(3)
C NOW BEGIN PROPAGATION

20 DO 40 I=1,PDT
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CALL VNULFF(STN,XC,NM,NN.1,NDANDA,XIPNDA.IER)
DO 50 J=1,JIN

* XC(J) c Xl(J)
50 CONTINUE
40 CONTINUE

C INCREMENT THE ABSOLUTE TIME AND CALCULATE LOS FOR OUTPUT
ABT=ABT+DTUPDT
CALL VNULFF(CPHIL,XC,3,NN,1,3,NDA,XL,3,IER)
RAD = ((XL(1)**2) + (XL(2)'.2))*'0.5
WRITE(6,1000)ABT,XL(1) ,XL(2) DXL(3) ,RAD

1000 FORMAT(lX1lF7.3,4El2.4)
WRITE(7, 1001)ABTDRAD,XL(3)

1001 FORMAT(2X,1F7.3,2El4.6)
IF(ABT.LE.TMAX) GOTO 20

*60 CONTINUE
RETURN
END
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forced structural vibrations. The simulation can output both the unsuppressed
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response for stability and performance analysis.
With the control problem formulated for modal control, an investigation is
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Controllers based on modal cost analysis alone are found to yield marginal
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of modes and the overwhelmingly large relative contribution of the three rigid

body modes included may obscure some conclusions. Results indicate more re-
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